You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Zero/ZeroLevel.HNSW/Services/Layer.cs

471 lines
18 KiB

3 years ago
using System;
using System.Collections.Generic;
using System.Linq;
using ZeroLevel.HNSW.Services;
using ZeroLevel.Services.Serialization;
3 years ago
namespace ZeroLevel.HNSW
{
/// <summary>
/// NSW graph
/// </summary>
internal sealed class Layer<TItem>
: IBinarySerializable
3 years ago
{
private readonly NSWOptions<TItem> _options;
private readonly VectorSet<TItem> _vectors;
private readonly LinksSet _links;
public readonly int M;
private readonly Dictionary<int, float> connections;
internal IDictionary<int, HashSet<int>> Links => _links.Links;
3 years ago
/// <summary>
/// There are links е the layer
/// </summary>
internal bool HasLinks => (_links.Count > 0);
internal IEnumerable<int> this[int vector_index] => _links.FindNeighbors(vector_index);
/// <summary>
/// HNSW layer
/// <remarks>
/// Article: Section 4.1:
/// "Selection of the Mmax0 (the maximum number of connections that an element can have in the zero layer) also
/// has a strong influence on the search performance, especially in case of high quality(high recall) search.
/// Simulations show that setting Mmax0 to M(this corresponds to kNN graphs on each layer if the neighbors
/// selection heuristic is not used) leads to a very strong performance penalty at high recall.
/// Simulations also suggest that 2∙M is a good choice for Mmax0;
/// setting the parameter higher leads to performance degradation and excessive memory usage."
/// </remarks>
/// </summary>
/// <param name="options">HNSW graph options</param>
/// <param name="vectors">General vector set</param>
internal Layer(NSWOptions<TItem> options, VectorSet<TItem> vectors, bool nswLayer)
3 years ago
{
_options = options;
_vectors = vectors;
M = nswLayer ? 2 * _options.M : _options.M;
_links = new LinksSet(M);
connections = new Dictionary<int, float>(M + 1);
3 years ago
}
internal int FindEntryPointAtLayer(Func<int, float> targetCosts)
3 years ago
{
if (_links.Count == 0) return EntryPoint;
var set = new HashSet<int>(_links.Items().Select(p => p.Item1));
int minId = -1;
float minDist = float.MaxValue;
foreach (var id in set)
3 years ago
{
var d = targetCosts(id);
if (d < minDist && Math.Abs(d) > float.Epsilon)
{
minDist = d;
minId = id;
}
3 years ago
}
return minId;
3 years ago
}
internal void Push(int q, int ep, MinHeap W, Func<int, float> distance)
{
if (HasLinks == false)
{
AddBidirectionallConnections(q, q);
}
else
{
// W ← SEARCH - LAYER(q, ep, efConstruction, lc)
foreach (var i in KNearestAtLayer(ep, distance, _options.EFConstruction))
{
W.Push(i);
}
int count = 0;
connections.Clear();
while (count < M && W.Count > 0)
{
var nearest = W.Pop();
var nearest_nearest = GetNeighbors(nearest.Item1).ToArray();
if (nearest_nearest.Length < M)
{
if (AddBidirectionallConnections(q, nearest.Item1))
{
connections.Add(nearest.Item1, nearest.Item2);
count++;
}
}
else
{
if ((M - count) < 2)
{
// remove link q - max_q
var max = connections.OrderBy(pair => pair.Value).First();
RemoveBidirectionallConnections(q, max.Key);
connections.Remove(max.Key);
}
// get nearest_nearest candidate
var mn_id = -1;
var mn_d = float.MinValue;
for (int i = 0; i < nearest_nearest.Length; i++)
{
var d = _options.Distance(_vectors[nearest.Item1], _vectors[nearest_nearest[i]]);
if (q != nearest_nearest[i] && connections.ContainsKey(nearest_nearest[i]) == false)
{
if (mn_id == -1 || d > mn_d)
{
mn_d = d;
mn_id = nearest_nearest[i];
}
}
}
// remove link neareset - nearest_nearest
RemoveBidirectionallConnections(nearest.Item1, mn_id);
// add link q - neareset
if (AddBidirectionallConnections(q, nearest.Item1))
{
connections.Add(nearest.Item1, nearest.Item2);
count++;
}
// add link q - max_nearest_nearest
if (AddBidirectionallConnections(q, mn_id))
{
connections.Add(mn_id, mn_d);
count++;
}
}
}
}
}
internal void RemoveBidirectionallConnections(int q, int p)
{
_links.RemoveIndex(q, p);
}
internal bool AddBidirectionallConnections(int q, int p)
{
if (q == p)
{
if (EntryPoint >= 0)
{
return _links.Add(q, EntryPoint);
}
else
{
EntryPoint = q;
}
}
else
{
return _links.Add(q, p);
}
return false;
}
private int EntryPoint = -1;
3 years ago
#region Implementation of https://arxiv.org/ftp/arxiv/papers/1603/1603.09320.pdf
/// <summary>
/// Algorithm 2
/// </summary>
/// <param name="q">query element</param>
/// <param name="ep">enter points ep</param>
/// <returns>Output: ef closest neighbors to q</returns>
internal IEnumerable<(int, float)> KNearestAtLayer(int entryPointId, Func<int, float> targetCosts, int ef)
3 years ago
{
/*
* v ep // set of visited elements
* C ep // set of candidates
* W ep // dynamic list of found nearest neighbors
* while C > 0
* c extract nearest element from C to q
* f get furthest element from W to q
* if distance(c, q) > distance(f, q)
* break // all elements in W are evaluated
* for each e neighbourhood(c) at layer lc // update C and W
* if e v
* v v e
* f get furthest element from W to q
* if distance(e, q) < distance(f, q) or W < ef
* C C e
* W W e
* if W > ef
* remove furthest element from W to q
* return W
*/
int farthestId;
float farthestDistance;
var d = targetCosts(entryPointId);
var v = new VisitedBitSet(_vectors.Count, _options.M);
// * v ← ep // set of visited elements
v.Add(entryPointId);
// * C ← ep // set of candidates
var C = new MinHeap(ef);
C.Push((entryPointId, d));
// * W ← ep // dynamic list of found nearest neighbors
var W = new MaxHeap(ef + 1);
W.Push((entryPointId, d));
// * while │C│ > 0
3 years ago
while (C.Count > 0)
{
// * c ← extract nearest element from C to q
var c = C.Pop();
// * f ← get furthest element from W to q
// * if distance(c, q) > distance(f, q)
if (W.TryPeek(out _, out farthestDistance) && c.Item2 > farthestDistance)
3 years ago
{
// * break // all elements in W are evaluated
3 years ago
break;
}
// * for each e ∈ neighbourhood(c) at layer lc // update C and W
foreach (var e in GetNeighbors(c.Item1))
3 years ago
{
// * if e ∉ v
if (!v.Contains(e))
3 years ago
{
// * v ← v e
v.Add(e);
// * f ← get furthest element from W to q
W.TryPeek(out farthestId, out farthestDistance);
var eDistance = targetCosts(e);
// * if distance(e, q) < distance(f, q) or │W│ < ef
if (W.Count < ef || (farthestId >= 0 && eDistance < farthestDistance))
3 years ago
{
// * C ← C e
C.Push((e, eDistance));
// * W ← W e
W.Push((e, eDistance));
// * if │W│ > ef
3 years ago
if (W.Count > ef)
{
// * remove furthest element from W to q
W.Pop();
3 years ago
}
}
}
}
}
C.Clear();
v.Clear();
return W;
3 years ago
}
internal IEnumerable<(int, float)> KNearestAtLayer(int entryPointId, Func<int, float> targetCosts, int ef, SearchContext context)
{
int farthestId;
float farthestDistance;
var d = targetCosts(entryPointId);
var v = new VisitedBitSet(_vectors.Count, _options.M);
// * v ← ep // set of visited elements
v.Add(entryPointId);
// * C ← ep // set of candidates
var C = new MinHeap(ef);
C.Push((entryPointId, d));
// * W ← ep // dynamic list of found nearest neighbors
var W = new MaxHeap(ef + 1);
if (context.IsActiveNode(entryPointId))
{
W.Push((entryPointId, d));
}
// * while │C│ > 0
while (C.Count > 0)
{
// * c ← extract nearest element from C to q
var c = C.Pop();
// * f ← get furthest element from W to q
// * if distance(c, q) > distance(f, q)
if (W.TryPeek(out _, out farthestDistance) && c.Item2 > farthestDistance)
{
// * break // all elements in W are evaluated
break;
}
// * for each e ∈ neighbourhood(c) at layer lc // update C and W
foreach (var e in GetNeighbors(c.Item1))
{
// * if e ∉ v
if (!v.Contains(e))
{
// * v ← v e
v.Add(e);
// * f ← get furthest element from W to q
W.TryPeek(out farthestId, out farthestDistance);
var eDistance = targetCosts(e);
// * if distance(e, q) < distance(f, q) or │W│ < ef
if (W.Count < ef || (farthestId >= 0 && eDistance < farthestDistance))
{
// * C ← C e
C.Push((e, eDistance));
// * W ← W e
if (context.IsActiveNode(e))
{
W.Push((e, eDistance));
if (W.Count > ef)
{
W.Pop();
}
}
}
}
}
}
C.Clear();
v.Clear();
return W;
}
/// <summary>
/// Algorithm 2
/// </summary>
/// <param name="q">query element</param>
/// <param name="ep">enter points ep</param>
/// <returns>Output: ef closest neighbors to q</returns>
internal IEnumerable<(int, float)> KNearestAвtLayer(int entryPointId, Func<int, float> targetCosts, int ef, SearchContext context)
{
int farthestId;
float farthestDistance;
var d = targetCosts(entryPointId);
var v = new VisitedBitSet(_vectors.Count, _options.M);
// v ← ep // set of visited elements
v.Add(entryPointId);
// C ← ep // set of candidates
var C = new MinHeap(ef);
C.Push((entryPointId, d));
// W ← ep // dynamic list of found nearest neighbors
var W = new MaxHeap(ef + 1);
// W ← ep // dynamic list of found nearest neighbors
if (context.IsActiveNode(entryPointId))
{
W.Push((entryPointId, d));
}
// run bfs
while (C.Count > 0)
{
// get next candidate to check and expand
var toExpand = C.Pop();
if (W.TryPeek(out _, out farthestDistance) && toExpand.Item2 > farthestDistance)
{
// the closest candidate is farther than farthest result
break;
}
// expand candidate
var neighboursIds = GetNeighbors(toExpand.Item1).ToArray();
for (int i = 0; i < neighboursIds.Length; ++i)
{
int neighbourId = neighboursIds[i];
if (!v.Contains(neighbourId))
{
W.TryPeek(out farthestId, out farthestDistance);
// enqueue perspective neighbours to expansion list
var neighbourDistance = targetCosts(neighbourId);
if (context.IsActiveNode(neighbourId))
{
if (W.Count < ef || (farthestId >= 0 && neighbourDistance < farthestDistance))
{
W.Push((neighbourId, neighbourDistance));
if (W.Count > ef)
{
W.Pop();
}
}
}
if (W.TryPeek(out _, out farthestDistance) && neighbourDistance < farthestDistance)
{
C.Push((neighbourId, neighbourDistance));
}
v.Add(neighbourId);
}
}
}
C.Clear();
v.Clear();
return W;
}
/// <summary>
/// Algorithm 2, modified for LookAlike
/// </summary>
/// <param name="q">query element</param>
/// <param name="ep">enter points ep</param>
/// <returns>Output: ef closest neighbors to q</returns>
internal IEnumerable<(int, float)> KNearestAtLayer(int ef, SearchContext context)
{
var distance = new Func<int, int, float>((id1, id2) => _options.Distance(_vectors[id1], _vectors[id2]));
// v ← ep // set of visited elements
var v = new VisitedBitSet(_vectors.Count, _options.M);
// C ← ep // set of candidates
var C = new MinHeap(ef);
float dist;
var W = new MaxHeap(ef + 1);
var entryPoints = context.EntryPoints;
do
{
foreach (var ep in entryPoints)
{
var neighboursIds = GetNeighbors(ep).ToArray();
for (int i = 0; i < neighboursIds.Length; ++i)
{
C.Push((ep, distance(ep, neighboursIds[i])));
}
v.Add(ep);
}
// run bfs
while (C.Count > 0)
{
// get next candidate to check and expand
var toExpand = C.Pop();
if (W.TryPeek(out _, out dist) && toExpand.Item2 > dist)
{
// the closest candidate is farther than farthest result
break;
}
if (context.IsActiveNode(toExpand.Item1))
{
if (W.Count < ef || W.Count == 0 || (W.TryPeek(out _, out dist) && toExpand.Item2 < dist))
{
W.Push((toExpand.Item1, toExpand.Item2));
if (W.Count > ef)
{
W.Pop();
}
}
}
}
entryPoints = W.Select(p => p.Item1);
}
while (W.Count < ef);
C.Clear();
v.Clear();
return W;
}
3 years ago
#endregion
internal IEnumerable<int> GetNeighbors(int id) => _links.FindNeighbors(id);
public void Serialize(IBinaryWriter writer)
{
_links.Serialize(writer);
}
public void Deserialize(IBinaryReader reader)
{
_links.Deserialize(reader);
}
// internal Histogram GetHistogram(HistogramMode mode) => _links.CalculateHistogram(mode);
3 years ago
}
}

Powered by TurnKey Linux.