|
|
|
|
using Microsoft.ML.OnnxRuntime;
|
|
|
|
|
using Microsoft.ML.OnnxRuntime.Tensors;
|
|
|
|
|
using SixLabors.ImageSharp;
|
|
|
|
|
using ZeroLevel.NN.Models;
|
|
|
|
|
|
|
|
|
|
namespace ZeroLevel.NN
|
|
|
|
|
{
|
|
|
|
|
public abstract class SSDNN
|
|
|
|
|
: IDisposable
|
|
|
|
|
{
|
|
|
|
|
private readonly InferenceSession _session;
|
|
|
|
|
|
|
|
|
|
public SSDNN(string modelPath, bool gpu = false)
|
|
|
|
|
{
|
|
|
|
|
if (gpu)
|
|
|
|
|
{
|
|
|
|
|
try
|
|
|
|
|
{
|
|
|
|
|
var so = SessionOptions.MakeSessionOptionWithCudaProvider(0);
|
|
|
|
|
so.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_VERBOSE;
|
|
|
|
|
so.GraphOptimizationLevel = GraphOptimizationLevel.ORT_ENABLE_ALL;
|
|
|
|
|
_session = new InferenceSession(modelPath, so);
|
|
|
|
|
}
|
|
|
|
|
catch (Exception ex)
|
|
|
|
|
{
|
|
|
|
|
Log.Error(ex, "Fault create InferenceSession with CUDA");
|
|
|
|
|
_session = new InferenceSession(modelPath);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
_session = new InferenceSession(modelPath);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
protected void Extract(IDictionary<string, Tensor<float>> input, Action<IDictionary<string, Tensor<float>>> inputHandler)
|
|
|
|
|
{
|
|
|
|
|
var container = new List<NamedOnnxValue>();
|
|
|
|
|
foreach (var pair in input)
|
|
|
|
|
{
|
|
|
|
|
container.Add(NamedOnnxValue.CreateFromTensor<float>(pair.Key, pair.Value));
|
|
|
|
|
}
|
|
|
|
|
using (var output = _session.Run(container))
|
|
|
|
|
{
|
|
|
|
|
var result = new Dictionary<string, Tensor<float>>();
|
|
|
|
|
foreach (var o in output)
|
|
|
|
|
{
|
|
|
|
|
result.Add(o.Name, o.AsTensor<float>());
|
|
|
|
|
}
|
|
|
|
|
inputHandler.Invoke(result);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/// <summary>
|
|
|
|
|
/// Scale input vectors individually to unit norm (vector length).
|
|
|
|
|
/// </summary>
|
|
|
|
|
protected void Norm(float[] vector)
|
|
|
|
|
{
|
|
|
|
|
var totalSum = vector.Sum(v => v * v);
|
|
|
|
|
var length = (float)Math.Sqrt(totalSum);
|
|
|
|
|
var inverseLength = 1.0f / length;
|
|
|
|
|
for (int i = 0; i < vector.Length; i++)
|
|
|
|
|
{
|
|
|
|
|
vector[i] *= inverseLength;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
protected ImagePredictionInput[] MakeInputBatch(Image image, ImagePreprocessorOptions options)
|
|
|
|
|
{
|
|
|
|
|
return ImagePreprocessor.ToTensors(image, options);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
protected Tensor<float> MakeInput(Image image, ImagePreprocessorOptions options)
|
|
|
|
|
{
|
|
|
|
|
var input = ImagePreprocessor.ToTensors(image, options);
|
|
|
|
|
return input[0].Tensor;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
protected int Argmax(float[] embedding)
|
|
|
|
|
{
|
|
|
|
|
if (embedding.Length == 0) return -1;
|
|
|
|
|
var im = 0;
|
|
|
|
|
var max = embedding[0];
|
|
|
|
|
for (var i = 1; i < embedding.Length; i++)
|
|
|
|
|
{
|
|
|
|
|
if (embedding[i] > max)
|
|
|
|
|
{
|
|
|
|
|
im = i;
|
|
|
|
|
max = embedding[i];
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
return im;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
public void Dispose()
|
|
|
|
|
{
|
|
|
|
|
_session?.Dispose();
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|