You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Zero/TestHNSW/HNSWDemo/Program.cs

465 lines
18 KiB

3 years ago
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.IO;
3 years ago
using System.Linq;
using ZeroLevel.HNSW;
namespace HNSWDemo
{
class Program
{
3 years ago
public class VectorsDirectCompare
{
private readonly IList<float[]> _vectors;
private readonly Func<float[], float[], float> _distance;
public VectorsDirectCompare(List<float[]> vectors, Func<float[], float[], float> distance)
{
_vectors = vectors;
_distance = distance;
}
public IEnumerable<(int, float)> KNearest(float[] v, int k)
{
var weights = new Dictionary<int, float>();
for (int i = 0; i < _vectors.Count; i++)
{
var d = _distance(v, _vectors[i]);
weights[i] = d;
}
return weights.OrderBy(p => p.Value).Take(k).Select(p => (p.Key, p.Value));
}
}
3 years ago
public enum Gender
{
Unknown, Male, Feemale
}
public class Person
{
public Gender Gender { get; set; }
public int Age { get; set; }
public long Number { get; set; }
private static (float[], Person) Generate(int vector_size)
{
var rnd = new Random((int)Environment.TickCount);
var vector = new float[vector_size];
DefaultRandomGenerator.Instance.NextFloats(vector);
VectorUtils.NormalizeSIMD(vector);
var p = new Person();
p.Age = rnd.Next(15, 80);
var gr = rnd.Next(0, 3);
p.Gender = (gr == 0) ? Gender.Male : (gr == 1) ? Gender.Feemale : Gender.Unknown;
p.Number = CreateNumber(rnd);
return (vector, p);
}
public static List<(float[], Person)> GenerateRandom(int vectorSize, int vectorsCount)
{
var vectors = new List<(float[], Person)>();
for (int i = 0; i < vectorsCount; i++)
{
vectors.Add(Generate(vectorSize));
}
return vectors;
}
static HashSet<long> _exists = new HashSet<long>();
private static long CreateNumber(Random rnd)
{
long start_number;
do
{
start_number = 79600000000L;
start_number = start_number + rnd.Next(4, 8) * 10000000;
start_number += rnd.Next(0, 1000000);
}
while (_exists.Add(start_number) == false);
return start_number;
}
}
private static List<float[]> RandomVectors(int vectorSize, int vectorsCount)
{
var vectors = new List<float[]>();
for (int i = 0; i < vectorsCount; i++)
{
var vector = new float[vectorSize];
DefaultRandomGenerator.Instance.NextFloats(vector);
VectorUtils.NormalizeSIMD(vector);
vectors.Add(vector);
}
return vectors;
}
private static Dictionary<int, Person> _database = new Dictionary<int, Person>();
static void Main(string[] args)
{
FilterTest();
Console.ReadKey();
}
static void TransformToCompactWorldTest()
{
var count = 10000;
var dimensionality = 128;
var samples = RandomVectors(dimensionality, count);
var world = new SmallWorld<float[]>(NSWOptions<float[]>.Create(6, 15, 200, 200, CosineDistance.ForUnits, true, true, selectionHeuristic: NeighbourSelectionHeuristic.SelectSimple));
var ids = world.AddItems(samples.ToArray());
Console.WriteLine("Start test");
byte[] dump;
using (var ms = new MemoryStream())
{
world.Serialize(ms);
dump = ms.ToArray();
}
Console.WriteLine($"Full dump size: {dump.Length} bytes");
ReadOnlySmallWorld<float[]> compactWorld;
using (var ms = new MemoryStream(dump))
{
compactWorld = SmallWorld.CreateReadOnlyWorldFrom<float[]>(NSWReadOnlyOption<float[]>.Create(200, CosineDistance.ForUnits, true, true, selectionHeuristic: NeighbourSelectionHeuristic.SelectSimple), ms);
}
// Compare worlds outputs
int K = 200;
var hits = 0;
var miss = 0;
var testCount = 1000;
var sw = new Stopwatch();
var timewatchesHNSW = new List<float>();
var timewatchesHNSWCompact = new List<float>();
var test_vectors = RandomVectors(dimensionality, testCount);
foreach (var v in test_vectors)
{
sw.Restart();
var gt = world.Search(v, K).Select(e => e.Item1).ToHashSet();
sw.Stop();
timewatchesHNSW.Add(sw.ElapsedMilliseconds);
sw.Restart();
var result = compactWorld.Search(v, K).Select(e => e.Item1).ToHashSet();
sw.Stop();
timewatchesHNSWCompact.Add(sw.ElapsedMilliseconds);
foreach (var r in result)
{
if (gt.Contains(r))
{
hits++;
}
else
{
miss++;
}
}
}
byte[] smallWorldDump;
using (var ms = new MemoryStream())
{
compactWorld.Serialize(ms);
smallWorldDump = ms.ToArray();
}
var p = smallWorldDump.Length * 100.0f / dump.Length;
Console.WriteLine($"Compact dump size: {smallWorldDump.Length} bytes. Decrease: {100 - p}%");
Console.WriteLine($"HITS: {hits}");
Console.WriteLine($"MISSES: {miss}");
Console.WriteLine($"MIN HNSW TIME: {timewatchesHNSW.Min()} ms");
Console.WriteLine($"AVG HNSW TIME: {timewatchesHNSW.Average()} ms");
Console.WriteLine($"MAX HNSW TIME: {timewatchesHNSW.Max()} ms");
Console.WriteLine($"MIN HNSWCompact TIME: {timewatchesHNSWCompact.Min()} ms");
Console.WriteLine($"AVG HNSWCompact TIME: {timewatchesHNSWCompact.Average()} ms");
Console.WriteLine($"MAX HNSWCompact TIME: {timewatchesHNSWCompact.Max()} ms");
}
static void TransformToCompactWorldTestWithAccuracity()
{
var count = 10000;
var dimensionality = 128;
var samples = RandomVectors(dimensionality, count);
var test = new VectorsDirectCompare(samples, CosineDistance.ForUnits);
var world = new SmallWorld<float[]>(NSWOptions<float[]>.Create(6, 15, 200, 200, CosineDistance.ForUnits, true, true, selectionHeuristic: NeighbourSelectionHeuristic.SelectSimple));
var ids = world.AddItems(samples.ToArray());
Console.WriteLine("Start test");
byte[] dump;
using (var ms = new MemoryStream())
{
world.Serialize(ms);
dump = ms.ToArray();
}
ReadOnlySmallWorld<float[]> compactWorld;
using (var ms = new MemoryStream(dump))
{
compactWorld = SmallWorld.CreateReadOnlyWorldFrom<float[]>(NSWReadOnlyOption<float[]>.Create(200, CosineDistance.ForUnits, true, true, selectionHeuristic: NeighbourSelectionHeuristic.SelectSimple), ms);
}
// Compare worlds outputs
int K = 200;
var hits = 0;
var miss = 0;
var testCount = 2000;
var sw = new Stopwatch();
var timewatchesNP = new List<float>();
var timewatchesHNSW = new List<float>();
var timewatchesHNSWCompact = new List<float>();
var test_vectors = RandomVectors(dimensionality, testCount);
var totalHitsHNSW = new List<int>();
var totalHitsHNSWCompact = new List<int>();
foreach (var v in test_vectors)
{
var npHitsHNSW = 0;
var npHitsHNSWCompact = 0;
sw.Restart();
var gtNP = test.KNearest(v, K).Select(p => p.Item1).ToHashSet();
sw.Stop();
timewatchesNP.Add(sw.ElapsedMilliseconds);
sw.Restart();
var gt = world.Search(v, K).Select(e => e.Item1).ToHashSet();
sw.Stop();
timewatchesHNSW.Add(sw.ElapsedMilliseconds);
sw.Restart();
var result = compactWorld.Search(v, K).Select(e => e.Item1).ToHashSet();
sw.Stop();
timewatchesHNSWCompact.Add(sw.ElapsedMilliseconds);
foreach (var r in result)
{
if (gt.Contains(r))
{
hits++;
}
else
{
miss++;
}
if (gtNP.Contains(r))
{
npHitsHNSWCompact++;
}
}
foreach (var r in gt)
{
if (gtNP.Contains(r))
{
npHitsHNSW++;
}
}
totalHitsHNSW.Add(npHitsHNSW);
totalHitsHNSWCompact.Add(npHitsHNSWCompact);
}
byte[] smallWorldDump;
using (var ms = new MemoryStream())
{
compactWorld.Serialize(ms);
smallWorldDump = ms.ToArray();
}
var p = smallWorldDump.Length * 100.0f / dump.Length;
Console.WriteLine($"Full dump size: {dump.Length} bytes");
Console.WriteLine($"Compact dump size: {smallWorldDump.Length} bytes. Decrease: {100 - p}%");
Console.WriteLine($"HITS: {hits}");
Console.WriteLine($"MISSES: {miss}");
Console.WriteLine($"MIN NP TIME: {timewatchesNP.Min()} ms");
Console.WriteLine($"AVG NP TIME: {timewatchesNP.Average()} ms");
Console.WriteLine($"MAX NP TIME: {timewatchesNP.Max()} ms");
Console.WriteLine($"MIN HNSW TIME: {timewatchesHNSW.Min()} ms");
Console.WriteLine($"AVG HNSW TIME: {timewatchesHNSW.Average()} ms");
Console.WriteLine($"MAX HNSW TIME: {timewatchesHNSW.Max()} ms");
Console.WriteLine($"MIN HNSWCompact TIME: {timewatchesHNSWCompact.Min()} ms");
Console.WriteLine($"AVG HNSWCompact TIME: {timewatchesHNSWCompact.Average()} ms");
Console.WriteLine($"MAX HNSWCompact TIME: {timewatchesHNSWCompact.Max()} ms");
Console.WriteLine($"MIN HNSW Accuracity: {totalHitsHNSW.Min() * 100 / K}%");
Console.WriteLine($"AVG HNSW Accuracity: {totalHitsHNSW.Average() * 100 / K}%");
Console.WriteLine($"MAX HNSW Accuracity: {totalHitsHNSW.Max() * 100 / K}%");
Console.WriteLine($"MIN HNSWCompact Accuracity: {totalHitsHNSWCompact.Min() * 100 / K}%");
Console.WriteLine($"AVG HNSWCompact Accuracity: {totalHitsHNSWCompact.Average() * 100 / K}%");
Console.WriteLine($"MAX HNSWCompact Accuracity: {totalHitsHNSWCompact.Max() * 100 / K}%");
}
static void SaveRestoreTest()
{
var count = 1000;
var dimensionality = 128;
var samples = RandomVectors(dimensionality, count);
var world = new SmallWorld<float[]>(NSWOptions<float[]>.Create(6, 15, 200, 200, CosineDistance.ForUnits, true, true, selectionHeuristic: NeighbourSelectionHeuristic.SelectSimple));
var sw = new Stopwatch();
sw.Start();
var ids = world.AddItems(samples.ToArray());
sw.Stop();
Console.WriteLine($"Insert {ids.Length} items on {sw.ElapsedMilliseconds} ms");
Console.WriteLine("Start test");
byte[] dump;
using (var ms = new MemoryStream())
{
world.Serialize(ms);
dump = ms.ToArray();
}
Console.WriteLine($"Full dump size: {dump.Length} bytes");
byte[] testDump;
var restoredWorld = new SmallWorld<float[]>(NSWOptions<float[]>.Create(6, 15, 200, 200, CosineDistance.ForUnits, true, true, selectionHeuristic: NeighbourSelectionHeuristic.SelectSimple));
using (var ms = new MemoryStream(dump))
{
restoredWorld.Deserialize(ms);
}
using (var ms = new MemoryStream())
{
restoredWorld.Serialize(ms);
testDump = ms.ToArray();
}
if (testDump.Length != dump.Length)
{
Console.WriteLine($"Incorrect restored size. Got {testDump.Length}. Expected: {dump.Length}");
return;
}
ReadOnlySmallWorld<float[]> compactWorld;
using (var ms = new MemoryStream(dump))
{
compactWorld = SmallWorld.CreateReadOnlyWorldFrom<float[]>(NSWReadOnlyOption<float[]>.Create(200, CosineDistance.ForUnits, true, true, selectionHeuristic: NeighbourSelectionHeuristic.SelectSimple), ms);
}
byte[] smallWorldDump;
using (var ms = new MemoryStream())
{
compactWorld.Serialize(ms);
smallWorldDump = ms.ToArray();
}
var p = smallWorldDump.Length * 100.0f / dump.Length;
Console.WriteLine($"Compact dump size: {smallWorldDump.Length} bytes. Decrease: {100 - p}%");
}
static void FilterTest()
{
var count = 1000;
var testCount = 100;
var dimensionality = 128;
3 years ago
var samples = Person.GenerateRandom(dimensionality, count);
3 years ago
var world = new SmallWorld<float[]>(NSWOptions<float[]>.Create(6, 15, 200, 200, CosineDistance.ForUnits, true, true, selectionHeuristic: NeighbourSelectionHeuristic.SelectSimple));
var ids = world.AddItems(samples.Select(i => i.Item1).ToArray());
for (int bi = 0; bi < samples.Count; bi++)
3 years ago
{
_database.Add(ids[bi], samples[bi].Item2);
3 years ago
}
Console.WriteLine("Start test");
int K = 200;
var vectors = RandomVectors(dimensionality, testCount);
var context = new SearchContext().SetActiveNodes(_database.Where(pair => pair.Value.Age > 20 && pair.Value.Age < 50 && pair.Value.Gender == Gender.Feemale).Select(pair => pair.Key));
var hits = 0;
var miss = 0;
foreach (var v in vectors)
{
var result = world.Search(v, K, context);
foreach (var r in result)
{
var record = _database[r.Item1];
if (record.Gender == Gender.Feemale && record.Age > 20 && record.Age < 50)
{
hits++;
}
else
{
miss++;
}
}
}
Console.WriteLine($"SUCCESS: {hits}");
Console.WriteLine($"ERROR: {miss}");
}
static void AccuracityTest()
{
int K = 200;
var count = 5000;
var testCount = 1000;
var dimensionality = 128;
3 years ago
var totalHits = new List<int>();
var timewatchesNP = new List<float>();
var timewatchesHNSW = new List<float>();
var samples = RandomVectors(dimensionality, count);
var sw = new Stopwatch();
var test = new VectorsDirectCompare(samples, CosineDistance.ForUnits);
var world = new SmallWorld<float[]>(NSWOptions<float[]>.Create(6, 15, 200, 200, CosineDistance.ForUnits, true, true, selectionHeuristic: NeighbourSelectionHeuristic.SelectSimple));
sw.Start();
var ids = world.AddItems(samples.ToArray());
sw.Stop();
Console.WriteLine($"Insert {ids.Length} items on {sw.ElapsedMilliseconds} ms");
Console.WriteLine("Start test");
var test_vectors = RandomVectors(dimensionality, testCount);
foreach (var v in test_vectors)
3 years ago
{
sw.Restart();
3 years ago
var gt = test.KNearest(v, K).ToDictionary(p => p.Item1, p => p.Item2);
3 years ago
sw.Stop();
3 years ago
timewatchesNP.Add(sw.ElapsedMilliseconds);
sw.Restart();
var result = world.Search(v, K);
sw.Stop();
timewatchesHNSW.Add(sw.ElapsedMilliseconds);
var hits = 0;
foreach (var r in result)
3 years ago
{
3 years ago
if (gt.ContainsKey(r.Item1))
{
hits++;
}
3 years ago
}
3 years ago
totalHits.Add(hits);
3 years ago
}
3 years ago
Console.WriteLine($"MIN Accuracity: {totalHits.Min() * 100 / K}%");
Console.WriteLine($"AVG Accuracity: {totalHits.Average() * 100 / K}%");
Console.WriteLine($"MAX Accuracity: {totalHits.Max() * 100 / K}%");
Console.WriteLine($"MIN HNSW TIME: {timewatchesHNSW.Min()} ms");
Console.WriteLine($"AVG HNSW TIME: {timewatchesHNSW.Average()} ms");
Console.WriteLine($"MAX HNSW TIME: {timewatchesHNSW.Max()} ms");
Console.WriteLine($"MIN NP TIME: {timewatchesNP.Min()} ms");
Console.WriteLine($"AVG NP TIME: {timewatchesNP.Average()} ms");
Console.WriteLine($"MAX NP TIME: {timewatchesNP.Max()} ms");
3 years ago
}
}
}

Powered by TurnKey Linux.