|
|
|
|
using System;
|
|
|
|
|
using System.Diagnostics.Contracts;
|
|
|
|
|
|
|
|
|
|
namespace MemoryPools.Collections.Specialized.Helpers
|
|
|
|
|
{
|
|
|
|
|
internal static class HashHelpers
|
|
|
|
|
{
|
|
|
|
|
private const int HashPrime = 101;
|
|
|
|
|
public const int HashCollisionThreshold = 100;
|
|
|
|
|
|
|
|
|
|
// Table of prime numbers to use as hash table sizes.
|
|
|
|
|
// A typical resize algorithm would pick the smallest prime number in this array
|
|
|
|
|
// that is larger than twice the previous capacity.
|
|
|
|
|
// Suppose our Hashtable currently has capacity x and enough elements are added
|
|
|
|
|
// such that a resize needs to occur. Resizing first computes 2x then finds the
|
|
|
|
|
// first prime in the table greater than 2x, i.e. if primes are ordered
|
|
|
|
|
// p_1, p_2, ..., p_i, ..., it finds p_n such that p_n-1 < 2x < p_n.
|
|
|
|
|
// Doubling is important for preserving the asymptotic complexity of the
|
|
|
|
|
// hashtable operations such as add. Having a prime guarantees that double
|
|
|
|
|
// hashing does not lead to infinite loops. IE, your hash function will be
|
|
|
|
|
// h1(key) + i*h2(key), 0 <= i < size. h2 and the size must be relatively prime.
|
|
|
|
|
public static readonly int[] Primes =
|
|
|
|
|
{
|
|
|
|
|
3, 7, 11, 17, 23, 29, 37, 47, 59, 71, 89, 107, 131, 163, 197, 239, 293, 353, 431, 521, 631, 761, 919,
|
|
|
|
|
1103, 1327, 1597, 1931, 2333, 2801, 3371, 4049, 4861, 5839, 7013, 8419, 10103, 12143, 14591,
|
|
|
|
|
17519, 21023, 25229, 30293, 36353, 43627, 52361, 62851, 75431, 90523, 108631, 130363, 156437,
|
|
|
|
|
187751, 225307, 270371, 324449, 389357, 467237, 560689, 672827, 807403, 968897, 1162687, 1395263,
|
|
|
|
|
1674319, 2009191, 2411033, 2893249, 3471899, 4166287, 4999559, 5999471, 7199369
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
public static bool IsPrime(int candidate)
|
|
|
|
|
{
|
|
|
|
|
if ((candidate & 1) != 0)
|
|
|
|
|
{
|
|
|
|
|
int limit = (int) Math.Sqrt(candidate);
|
|
|
|
|
for (int divisor = 3; divisor <= limit; divisor += 2)
|
|
|
|
|
{
|
|
|
|
|
if ((candidate % divisor) == 0)
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return (candidate == 2);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
public static int GetPrime(int min)
|
|
|
|
|
{
|
|
|
|
|
for (int i = 0; i < Primes.Length; i++)
|
|
|
|
|
{
|
|
|
|
|
int prime = Primes[i];
|
|
|
|
|
if (prime >= min) return prime;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
//outside of our predefined table.
|
|
|
|
|
//compute the hard way.
|
|
|
|
|
for (int i = (min | 1); i < Int32.MaxValue; i += 2)
|
|
|
|
|
{
|
|
|
|
|
if (IsPrime(i) && ((i - 1) % HashPrime != 0))
|
|
|
|
|
return i;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return min;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
public static int GetMinPrime()
|
|
|
|
|
{
|
|
|
|
|
return Primes[0];
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Returns size of hashtable to grow to.
|
|
|
|
|
public static int ExpandPrime(int oldSize)
|
|
|
|
|
{
|
|
|
|
|
var newSize = oldSize + 1;
|
|
|
|
|
|
|
|
|
|
// Allow the hashtables to grow to maximum possible size (~2G elements) before encoutering capacity overflow.
|
|
|
|
|
// Note that this check works even when _items.Length overflowed thanks to the (uint) cast
|
|
|
|
|
if ((uint) newSize > MaxPrimeArrayLength && MaxPrimeArrayLength > oldSize)
|
|
|
|
|
{
|
|
|
|
|
Contract.Assert(MaxPrimeArrayLength == GetPrime(MaxPrimeArrayLength), "Invalid MaxPrimeArrayLength");
|
|
|
|
|
return MaxPrimeArrayLength;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return GetPrime(newSize);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// This is the maximum prime smaller than Array.MaxArrayLength
|
|
|
|
|
public const int MaxPrimeArrayLength = 0x7FEFFFFD;
|
|
|
|
|
}
|
|
|
|
|
}
|