You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Zero/ZeroLevel.ML/DNN/ImageConvertor.cs

163 lines
6.7 KiB

extern alias CoreDrawing;
using System;
using System.Runtime.CompilerServices;
using ZeroLevel.ML.DNN.Models;
namespace ZeroLevel.ML.DNN
{
public interface IImageConverter
{
FastTensorPool ImageToFastTensorsV2(string imagePath);
FastTensorPool ImageToFastTensorsV2Inverted(string imagePath);
FastTensorPool ImageToFastTensorsV2(CoreDrawing.System.Drawing.Bitmap image);
FastTensorPool ImageToFastTensorsV2Inverted(CoreDrawing.System.Drawing.Bitmap image);
}
public sealed class ImageToTensorConversionOptions
{
/// <summary>
/// Размер кропа который хранится в одном срезе тензора
/// [batchSize, TensorCropSize, TensorCropSize, 3]
/// или
/// [batchSize, 3, TensorCropSize, TensorCropSize]
/// </summary>
public int TensorCropSize { get; set; } = 640;
/// <summary>
/// Множитель размера изображения в препроцессинге, например, мы хотим разрезать изображения на части размером 960*960
/// которые затем отресайзить на вход сети к 640 на 640, в этом случае производительнее сначала сделать ресайз изображения
/// на множитель side = side * (640 / 960) = side * 0.666, и затем разрезать сразу на части 640*640
/// </summary>
public float Multiplier { get; set; } = 1.0f;
/// <summary>
/// Размер батча для сетей с фиксированным размером, при -1 батч будет равен количеству кропов
/// </summary>
public int BatchSize { get; set; } = -1;
/// <summary>
/// Использовать BRG порядок пикселей вместо RGB
/// </summary>
public bool UseBRG { get; set; } = false;
/// <summary>
/// Кратность входного размера
/// </summary>
public int SizeMultiplicity { get; set; } = 64;
}
public sealed class ImageConverter
: IImageConverter
{
static float standart_normalizator_koef = 1.0f / 255.0f;
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static float StandartNormalizator(float x) => x * standart_normalizator_koef;
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static float MeanStdNormilize(float x, float mean, float std) => (standart_normalizator_koef * x - mean) / std;
private readonly ImageToTensorConversionOptions _options;
private readonly bool _noPreresize;
public ImageConverter(ImageToTensorConversionOptions options)
{
if (options.Multiplier <= float.Epsilon)
{
throw new ArgumentException("Multiplier must be positive number");
}
_options = options;
_noPreresize = Math.Abs(1.0f - options.Multiplier) <= float.Epsilon;
}
private CoreDrawing.System.Drawing.Bitmap PrepareBitmap(string imagePath)
{
CoreDrawing.System.Drawing.Bitmap image;
image = new CoreDrawing.System.Drawing.Bitmap(imagePath);
return PrepareBitmap(image);
}
private CoreDrawing.System.Drawing.Bitmap PrepareBitmap(CoreDrawing.System.Drawing.Bitmap image)
{
int sourceWidth = image.Width, sourceHeight = image.Height;
if (_noPreresize == false)
{
sourceWidth = (int)(sourceWidth * _options.Multiplier);
sourceHeight = (int)(sourceHeight * _options.Multiplier);
}
if (_options.SizeMultiplicity > 1)
{
//Сделать размеры изображения кратным числу
sourceWidth = ((int)Math.Ceiling((double)(sourceWidth / _options.SizeMultiplicity))) * _options.SizeMultiplicity;
sourceHeight = ((int)Math.Ceiling((double)(sourceHeight / _options.SizeMultiplicity))) * _options.SizeMultiplicity;
}
if (sourceWidth != image.Width || sourceHeight != image.Height)
{
using (var buf = image)
{
image = new CoreDrawing.System.Drawing.Bitmap(buf, new System.Drawing.Size(sourceWidth, sourceHeight));
}
}
return image;
}
public FastTensorPool ImageToFastTensorsV2(string imagePath)
{
var image = PrepareBitmap(imagePath);
return Convert(image, image.Width, image.Height, _options.TensorCropSize, _options.BatchSize, _options.UseBRG);
}
public FastTensorPool ImageToFastTensorsV2Inverted(string imagePath)
{
var image = PrepareBitmap(imagePath);
return ConvertInverted(image, image.Width, image.Height, _options.TensorCropSize, _options.BatchSize, _options.UseBRG);
}
public FastTensorPool ImageToFastTensorsV2(CoreDrawing.System.Drawing.Bitmap image)
{
image = PrepareBitmap(image);
return Convert(image, image.Width, image.Height, _options.TensorCropSize, _options.BatchSize, _options.UseBRG);
}
public FastTensorPool ImageToFastTensorsV2Inverted(CoreDrawing.System.Drawing.Bitmap image)
{
image = PrepareBitmap(image);
return ConvertInverted(image, image.Width, image.Height, _options.TensorCropSize, _options.BatchSize, _options.UseBRG);
}
public static FastTensorPool Convert(CoreDrawing.System.Drawing.Bitmap image, int sourceWidth, int sourceHeight, int cropSize, int batchSize, bool bgr)
{
var pool = new FastTensorPool(sourceWidth, sourceHeight, image.Width, image.Height, cropSize);
pool.BatchSize = batchSize;
if (bgr)
{
pool.FillFromImageBGR(image);
}
else
{
pool.FillFromImage(image);
}
return pool;
}
public static FastTensorPool ConvertInverted(CoreDrawing.System.Drawing.Bitmap image, int sourceWidth, int sourceHeight, int cropSize, int batchSize, bool bgr)
{
var pool = new FastTensorPool(sourceWidth, sourceHeight, image.Width, image.Height, cropSize);
pool.BatchSize = batchSize;
if(bgr)
{
pool.FillFromImageInvertAxeBGR(image);
}
else
{
pool.FillFromImageInvertAxe(image);
}
return pool;
}
}
}

Powered by TurnKey Linux.