|
|
|
|
using Microsoft.ML.OnnxRuntime.Tensors;
|
|
|
|
|
using System;
|
|
|
|
|
using System.Collections.Generic;
|
|
|
|
|
using System.Linq;
|
|
|
|
|
using ZeroLevel.ML.DNN.Models;
|
|
|
|
|
|
|
|
|
|
namespace ZeroLevel.ML.DNN.Detectors
|
|
|
|
|
{
|
|
|
|
|
public class FastestDetDetector
|
|
|
|
|
: SSDNN, IObjectDetector
|
|
|
|
|
{
|
|
|
|
|
private const float SIZE = 640;
|
|
|
|
|
|
|
|
|
|
public FastestDetDetector(string modelPath, int deviceId)
|
|
|
|
|
: base(modelPath, deviceId)
|
|
|
|
|
{
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
public float RNorm(float x) => ImageConverter.StandartNormalizator(x);
|
|
|
|
|
public float BNorm(float x) => ImageConverter.StandartNormalizator(x);
|
|
|
|
|
public float GNorm(float x) => ImageConverter.StandartNormalizator(x);
|
|
|
|
|
|
|
|
|
|
private static double sigmoid(double x)
|
|
|
|
|
{
|
|
|
|
|
return 1d / (1d + Math.Exp(-x));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
private static double tanh(double x)
|
|
|
|
|
{
|
|
|
|
|
return 2d / (1d + Math.Exp(-2d * x)) - 1d;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
public List<YoloPrediction> Predict(FastTensorPool inputs, float threshold)
|
|
|
|
|
{
|
|
|
|
|
var result = new List<YoloPrediction>();
|
|
|
|
|
var relative_koef_x = 1.0f / inputs.Width;
|
|
|
|
|
var relative_koef_y = 1.0f / inputs.Height;
|
|
|
|
|
Extract(new Dictionary<string, Tensor<float>> { { "images", inputs.Tensor } }, d =>
|
|
|
|
|
{
|
|
|
|
|
var output = d.First().Value;
|
|
|
|
|
var feature_map_height = output.Dimensions[2];
|
|
|
|
|
var feature_map_width = output.Dimensions[3];
|
|
|
|
|
for (int tensorIndex = 0; tensorIndex < inputs.TensorSize; tensorIndex++)
|
|
|
|
|
{
|
|
|
|
|
var tensor = inputs.GetTensor(tensorIndex);
|
|
|
|
|
|
|
|
|
|
for (int h = 0; h < feature_map_height; h++)
|
|
|
|
|
{
|
|
|
|
|
for (int w = 0; w < feature_map_width; w++)
|
|
|
|
|
{
|
|
|
|
|
var obj_score = output[tensorIndex, 0, h, w];
|
|
|
|
|
var cls_score = output[tensorIndex, 5, h, w];
|
|
|
|
|
var score = Math.Pow(obj_score, 0.6) * Math.Pow(cls_score, 0.4);
|
|
|
|
|
if (score > threshold)
|
|
|
|
|
{
|
|
|
|
|
var x_offset = tanh(output[tensorIndex, 1, h, w]);
|
|
|
|
|
var y_offset = tanh(output[tensorIndex, 2, h, w]);
|
|
|
|
|
|
|
|
|
|
var box_width = sigmoid(output[tensorIndex, 3, h, w]) * SIZE;
|
|
|
|
|
var box_height = sigmoid(output[tensorIndex, 4, h, w]) * SIZE;
|
|
|
|
|
|
|
|
|
|
var box_cx = ((w + x_offset) / feature_map_width) * SIZE + tensor.StartX;
|
|
|
|
|
var box_cy = ((h + y_offset) / feature_map_height) * SIZE + tensor.StartY;
|
|
|
|
|
|
|
|
|
|
result.Add(new YoloPrediction
|
|
|
|
|
{
|
|
|
|
|
Cx = (float)box_cx * relative_koef_x,
|
|
|
|
|
Cy = (float)box_cy * relative_koef_y,
|
|
|
|
|
W = (float)box_width * relative_koef_x,
|
|
|
|
|
H = (float)box_height * relative_koef_y,
|
|
|
|
|
Class = 0,
|
|
|
|
|
Score = (float)score
|
|
|
|
|
});
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
});
|
|
|
|
|
NMS.Apply(result);
|
|
|
|
|
return result;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
}
|