using System; using System.Diagnostics.Contracts; namespace MemoryPools.Collections.Specialized.Helpers { internal static class HashHelpers { private const int HashPrime = 101; public const int HashCollisionThreshold = 100; // Table of prime numbers to use as hash table sizes. // A typical resize algorithm would pick the smallest prime number in this array // that is larger than twice the previous capacity. // Suppose our Hashtable currently has capacity x and enough elements are added // such that a resize needs to occur. Resizing first computes 2x then finds the // first prime in the table greater than 2x, i.e. if primes are ordered // p_1, p_2, ..., p_i, ..., it finds p_n such that p_n-1 < 2x < p_n. // Doubling is important for preserving the asymptotic complexity of the // hashtable operations such as add. Having a prime guarantees that double // hashing does not lead to infinite loops. IE, your hash function will be // h1(key) + i*h2(key), 0 <= i < size. h2 and the size must be relatively prime. public static readonly int[] Primes = { 3, 7, 11, 17, 23, 29, 37, 47, 59, 71, 89, 107, 131, 163, 197, 239, 293, 353, 431, 521, 631, 761, 919, 1103, 1327, 1597, 1931, 2333, 2801, 3371, 4049, 4861, 5839, 7013, 8419, 10103, 12143, 14591, 17519, 21023, 25229, 30293, 36353, 43627, 52361, 62851, 75431, 90523, 108631, 130363, 156437, 187751, 225307, 270371, 324449, 389357, 467237, 560689, 672827, 807403, 968897, 1162687, 1395263, 1674319, 2009191, 2411033, 2893249, 3471899, 4166287, 4999559, 5999471, 7199369 }; public static bool IsPrime(int candidate) { if ((candidate & 1) != 0) { int limit = (int) Math.Sqrt(candidate); for (int divisor = 3; divisor <= limit; divisor += 2) { if ((candidate % divisor) == 0) return false; } return true; } return (candidate == 2); } public static int GetPrime(int min) { for (int i = 0; i < Primes.Length; i++) { int prime = Primes[i]; if (prime >= min) return prime; } //outside of our predefined table. //compute the hard way. for (int i = (min | 1); i < Int32.MaxValue; i += 2) { if (IsPrime(i) && ((i - 1) % HashPrime != 0)) return i; } return min; } public static int GetMinPrime() { return Primes[0]; } // Returns size of hashtable to grow to. public static int ExpandPrime(int oldSize) { var newSize = oldSize + 1; // Allow the hashtables to grow to maximum possible size (~2G elements) before encoutering capacity overflow. // Note that this check works even when _items.Length overflowed thanks to the (uint) cast if ((uint) newSize > MaxPrimeArrayLength && MaxPrimeArrayLength > oldSize) { Contract.Assert(MaxPrimeArrayLength == GetPrime(MaxPrimeArrayLength), "Invalid MaxPrimeArrayLength"); return MaxPrimeArrayLength; } return GetPrime(newSize); } // This is the maximum prime smaller than Array.MaxArrayLength public const int MaxPrimeArrayLength = 0x7FEFFFFD; } }