using System;
using System.Collections.Generic;
using System.Linq;
namespace ZeroLevel.HNSW
{
///
/// NSW graph
///
internal sealed class Layer
{
private readonly NSWOptions _options;
private readonly VectorSet _vectors;
private CompactBiDirectionalLinksSet _links = new CompactBiDirectionalLinksSet();
///
/// Count nodes at layer
///
public int Count => (_links.Count >> 1);
public Layer(NSWOptions options, VectorSet vectors)
{
_options = options;
_vectors = vectors;
}
public void AddBidirectionallConnectionts(int q, int p, float qpDistance)
{
// поиск в ширину ближайших узлов к найденному
var nearest = _links.FindLinksForId(p).ToArray();
// если у найденного узла максимальное количество связей
// if │eConn│ > Mmax // shrink connections of e
if (nearest.Length >= _options.M)
{
// ищем связь с самой большой дистанцией
float distance = nearest[0].Item3;
int index = 0;
for (int ni = 1; ni < nearest.Length; ni++)
{
if (nearest[ni].Item3 > distance)
{
index = ni;
distance = nearest[ni].Item3;
}
}
// делаем перелинковку вставляя новый узел между найденными
var id1 = nearest[index].Item1;
var id2 = nearest[index].Item2;
_links.Relink(id1, id2, q, qpDistance, _options.Distance(_vectors[id2], _vectors[q]));
}
else
{
// добавляем связь нового узла к найденному
_links.Add(q, p, qpDistance);
}
}
#region Implementation of https://arxiv.org/ftp/arxiv/papers/1603/1603.09320.pdf
///
/// Algorithm 2
///
/// query element
/// enter points ep
/// Output: ef closest neighbors to q
public void RunKnnAtLayer(int entryPointId, Func targetCosts, IDictionary W, int ef)
{
/*
* v ← ep // set of visited elements
* C ← ep // set of candidates
* W ← ep // dynamic list of found nearest neighbors
* while │C│ > 0
* c ← extract nearest element from C to q
* f ← get furthest element from W to q
* if distance(c, q) > distance(f, q)
* break // all elements in W are evaluated
* for each e ∈ neighbourhood(c) at layer lc // update C and W
* if e ∉ v
* v ← v ⋃ e
* f ← get furthest element from W to q
* if distance(e, q) < distance(f, q) or │W│ < ef
* C ← C ⋃ e
* W ← W ⋃ e
* if │W│ > ef
* remove furthest element from W to q
* return W
*/
var v = new VisitedBitSet(_vectors.Count, _options.M);
// v ← ep // set of visited elements
v.Add(entryPointId);
// C ← ep // set of candidates
var C = new Dictionary();
C.Add(entryPointId, targetCosts(entryPointId));
// W ← ep // dynamic list of found nearest neighbors
W.Add(entryPointId, C[entryPointId]);
// run bfs
while (C.Count > 0)
{
// get next candidate to check and expand
var toExpand = popCandidate();
var farthestResult = fartherFromResult();
if (toExpand.Item2 > farthestResult.Item2)
{
// the closest candidate is farther than farthest result
break;
}
// expand candidate
var neighboursIds = GetNeighbors(toExpand.Item1).ToArray();
for (int i = 0; i < neighboursIds.Length; ++i)
{
int neighbourId = neighboursIds[i];
if (!v.Contains(neighbourId))
{
// enqueue perspective neighbours to expansion list
farthestResult = fartherFromResult();
var neighbourDistance = targetCosts(neighbourId);
if (W.Count < ef || neighbourDistance < farthestResult.Item2)
{
C.Add(neighbourId, neighbourDistance);
W.Add(neighbourId, neighbourDistance);
if (W.Count > ef)
{
fartherPopFromResult();
}
}
v.Add(neighbourId);
}
}
}
C.Clear();
v.Clear();
}
///
/// Algorithm 3
///
public IDictionary SELECT_NEIGHBORS_SIMPLE(Func distance, IDictionary candidates, int M)
{
var bestN = M;
var W = new Dictionary(candidates);
if (W.Count > bestN)
{
var popFarther = new Action(() => { var pair = W.OrderByDescending(e => e.Value).First(); W.Remove(pair.Key); });
while (W.Count > bestN)
{
popFarther();
}
}
// return M nearest elements from C to q
return W;
}
///
/// Algorithm 4
///
/// base element
/// candidate elements
/// flag indicating whether or not to extend candidate list
/// flag indicating whether or not to add discarded elements
/// Output: M elements selected by the heuristic
public IDictionary SELECT_NEIGHBORS_HEURISTIC(Func distance, IDictionary candidates, int M, bool extendCandidates, bool keepPrunedConnections)
{
// R ← ∅
var R = new Dictionary();
// W ← C // working queue for the candidates
var W = new Dictionary(candidates);
// if extendCandidates // extend candidates by their neighbors
if (extendCandidates)
{
var extendBuffer = new HashSet();
// for each e ∈ C
foreach (var e in W)
{
var neighbors = GetNeighbors(e.Key);
// for each e_adj ∈ neighbourhood(e) at layer lc
foreach (var e_adj in neighbors)
{
// if eadj ∉ W
if (extendBuffer.Contains(e_adj) == false)
{
extendBuffer.Add(e_adj);
}
}
}
// W ← W ⋃ eadj
foreach (var id in extendBuffer)
{
W.Add(id, distance(id));
}
}
// Wd ← ∅ // queue for the discarded candidates
var Wd = new Dictionary();
var popCandidate = new Func<(int, float)>(() => { var pair = W.OrderBy(e => e.Value).First(); W.Remove(pair.Key); return (pair.Key, pair.Value); });
var fartherFromResult = new Func<(int, float)>(() => { if (R.Count == 0) return (-1, 0f); var pair = R.OrderByDescending(e => e.Value).First(); return (pair.Key, pair.Value); });
var popNearestDiscarded = new Func<(int, float)>(() => { var pair = Wd.OrderBy(e => e.Value).First(); W.Remove(pair.Key); return (pair.Key, pair.Value); });
// while │W│ > 0 and │R│< M
while (W.Count > 0 && R.Count < M)
{
// e ← extract nearest element from W to q
var (e, ed) = popCandidate();
var (fe, fd) = fartherFromResult();
// if e is closer to q compared to any element from R
if (R.Count == 0 ||
ed < fd)
{
// R ← R ⋃ e
R.Add(e, ed);
}
// else
{
// Wd ← Wd ⋃ e
Wd.Add(e, ed);
}
// if keepPrunedConnections // add some of the discarded // connections from Wd
if (keepPrunedConnections)
{
// while │Wd│> 0 and │R│< M
while (Wd.Count > 0 && R.Count < M)
{
// R ← R ⋃ extract nearest element from Wd to q
var nearest = popNearestDiscarded();
R.Add(nearest.Item1, nearest.Item2);
}
}
}
// return R
return R;
}
#endregion
private IEnumerable GetNeighbors(int id) => _links.FindLinksForId(id).Select(d => d.Item2);
}
}