mirror of https://github.com/ogoun/Zero.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
968 lines
36 KiB
968 lines
36 KiB
using System;
|
|
using System.Collections.Generic;
|
|
using System.Diagnostics;
|
|
using System.Drawing;
|
|
using System.IO;
|
|
using System.Linq;
|
|
using ZeroLevel.HNSW;
|
|
using ZeroLevel.HNSW.Services;
|
|
|
|
namespace HNSWDemo
|
|
{
|
|
class Program
|
|
{
|
|
public class VectorsDirectCompare
|
|
{
|
|
private const int HALF_LONG_BITS = 32;
|
|
private readonly IList<float[]> _vectors;
|
|
private readonly Func<float[], float[], float> _distance;
|
|
|
|
public VectorsDirectCompare(List<float[]> vectors, Func<float[], float[], float> distance)
|
|
{
|
|
_vectors = vectors;
|
|
_distance = distance;
|
|
}
|
|
|
|
public IEnumerable<(int, float)> KNearest(float[] v, int k)
|
|
{
|
|
var weights = new Dictionary<int, float>();
|
|
for (int i = 0; i < _vectors.Count; i++)
|
|
{
|
|
var d = _distance(v, _vectors[i]);
|
|
weights[i] = d;
|
|
}
|
|
return weights.OrderBy(p => p.Value).Take(k).Select(p => (p.Key, p.Value));
|
|
}
|
|
|
|
public List<HashSet<int>> DetectClusters()
|
|
{
|
|
var links = new SortedList<long, float>();
|
|
for (int i = 0; i < _vectors.Count; i++)
|
|
{
|
|
for (int j = i + 1; j < _vectors.Count; j++)
|
|
{
|
|
long k = (((long)(i)) << HALF_LONG_BITS) + j;
|
|
links.Add(k, _distance(_vectors[i], _vectors[j]));
|
|
}
|
|
}
|
|
|
|
// 1. Find R - bound between intra-cluster distances and out-of-cluster distances
|
|
var histogram = new Histogram(HistogramMode.SQRT, links.Values);
|
|
int threshold = histogram.OTSU();
|
|
var min = histogram.Bounds[threshold - 1];
|
|
var max = histogram.Bounds[threshold];
|
|
var R = (max + min) / 2;
|
|
|
|
// 2. Get links with distances less than R
|
|
var resultLinks = new SortedList<long, float>();
|
|
foreach (var pair in links)
|
|
{
|
|
if (pair.Value < R)
|
|
{
|
|
resultLinks.Add(pair.Key, pair.Value);
|
|
}
|
|
}
|
|
|
|
// 3. Extract clusters
|
|
List<HashSet<int>> clusters = new List<HashSet<int>>();
|
|
foreach (var pair in resultLinks)
|
|
{
|
|
var k = pair.Key;
|
|
var id1 = (int)(k >> HALF_LONG_BITS);
|
|
var id2 = (int)(k - (((long)id1) << HALF_LONG_BITS));
|
|
|
|
bool found = false;
|
|
foreach (var c in clusters)
|
|
{
|
|
if (c.Contains(id1))
|
|
{
|
|
c.Add(id2);
|
|
found = true;
|
|
break;
|
|
}
|
|
else if (c.Contains(id2))
|
|
{
|
|
c.Add(id1);
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
if (found == false)
|
|
{
|
|
var c = new HashSet<int>();
|
|
c.Add(id1);
|
|
c.Add(id2);
|
|
clusters.Add(c);
|
|
}
|
|
}
|
|
return clusters;
|
|
}
|
|
}
|
|
|
|
public class QVectorsDirectCompare
|
|
{
|
|
private const int HALF_LONG_BITS = 32;
|
|
private readonly IList<byte[]> _vectors;
|
|
private readonly Func<byte[], byte[], float> _distance;
|
|
|
|
public QVectorsDirectCompare(List<byte[]> vectors, Func<byte[], byte[], float> distance)
|
|
{
|
|
_vectors = vectors;
|
|
_distance = distance;
|
|
}
|
|
|
|
public IEnumerable<(int, float)> KNearest(byte[] v, int k)
|
|
{
|
|
var weights = new Dictionary<int, float>();
|
|
for (int i = 0; i < _vectors.Count; i++)
|
|
{
|
|
var d = _distance(v, _vectors[i]);
|
|
weights[i] = d;
|
|
}
|
|
return weights.OrderBy(p => p.Value).Take(k).Select(p => (p.Key, p.Value));
|
|
}
|
|
|
|
public List<HashSet<int>> DetectClusters()
|
|
{
|
|
var links = new SortedList<long, float>();
|
|
for (int i = 0; i < _vectors.Count; i++)
|
|
{
|
|
for (int j = i + 1; j < _vectors.Count; j++)
|
|
{
|
|
long k = (((long)(i)) << HALF_LONG_BITS) + j;
|
|
links.Add(k, _distance(_vectors[i], _vectors[j]));
|
|
}
|
|
}
|
|
|
|
// 1. Find R - bound between intra-cluster distances and out-of-cluster distances
|
|
var histogram = new Histogram(HistogramMode.SQRT, links.Values);
|
|
int threshold = histogram.OTSU();
|
|
var min = histogram.Bounds[threshold - 1];
|
|
var max = histogram.Bounds[threshold];
|
|
var R = (max + min) / 2;
|
|
|
|
// 2. Get links with distances less than R
|
|
var resultLinks = new SortedList<long, float>();
|
|
foreach (var pair in links)
|
|
{
|
|
if (pair.Value < R)
|
|
{
|
|
resultLinks.Add(pair.Key, pair.Value);
|
|
}
|
|
}
|
|
|
|
// 3. Extract clusters
|
|
List<HashSet<int>> clusters = new List<HashSet<int>>();
|
|
foreach (var pair in resultLinks)
|
|
{
|
|
var k = pair.Key;
|
|
var id1 = (int)(k >> HALF_LONG_BITS);
|
|
var id2 = (int)(k - (((long)id1) << HALF_LONG_BITS));
|
|
|
|
bool found = false;
|
|
foreach (var c in clusters)
|
|
{
|
|
if (c.Contains(id1))
|
|
{
|
|
c.Add(id2);
|
|
found = true;
|
|
break;
|
|
}
|
|
else if (c.Contains(id2))
|
|
{
|
|
c.Add(id1);
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
if (found == false)
|
|
{
|
|
var c = new HashSet<int>();
|
|
c.Add(id1);
|
|
c.Add(id2);
|
|
clusters.Add(c);
|
|
}
|
|
}
|
|
return clusters;
|
|
}
|
|
}
|
|
|
|
public class QLVectorsDirectCompare
|
|
{
|
|
private const int HALF_LONG_BITS = 32;
|
|
private readonly IList<long[]> _vectors;
|
|
private readonly Func<long[], long[], float> _distance;
|
|
|
|
public QLVectorsDirectCompare(List<long[]> vectors, Func<long[], long[], float> distance)
|
|
{
|
|
_vectors = vectors;
|
|
_distance = distance;
|
|
}
|
|
|
|
public IEnumerable<(int, float)> KNearest(long[] v, int k)
|
|
{
|
|
var weights = new Dictionary<int, float>();
|
|
for (int i = 0; i < _vectors.Count; i++)
|
|
{
|
|
var d = _distance(v, _vectors[i]);
|
|
weights[i] = d;
|
|
}
|
|
return weights.OrderBy(p => p.Value).Take(k).Select(p => (p.Key, p.Value));
|
|
}
|
|
|
|
public List<HashSet<int>> DetectClusters()
|
|
{
|
|
var links = new SortedList<long, float>();
|
|
for (int i = 0; i < _vectors.Count; i++)
|
|
{
|
|
for (int j = i + 1; j < _vectors.Count; j++)
|
|
{
|
|
long k = (((long)(i)) << HALF_LONG_BITS) + j;
|
|
links.Add(k, _distance(_vectors[i], _vectors[j]));
|
|
}
|
|
}
|
|
|
|
// 1. Find R - bound between intra-cluster distances and out-of-cluster distances
|
|
var histogram = new Histogram(HistogramMode.SQRT, links.Values);
|
|
int threshold = histogram.OTSU();
|
|
var min = histogram.Bounds[threshold - 1];
|
|
var max = histogram.Bounds[threshold];
|
|
var R = (max + min) / 2;
|
|
|
|
// 2. Get links with distances less than R
|
|
var resultLinks = new SortedList<long, float>();
|
|
foreach (var pair in links)
|
|
{
|
|
if (pair.Value < R)
|
|
{
|
|
resultLinks.Add(pair.Key, pair.Value);
|
|
}
|
|
}
|
|
|
|
// 3. Extract clusters
|
|
List<HashSet<int>> clusters = new List<HashSet<int>>();
|
|
foreach (var pair in resultLinks)
|
|
{
|
|
var k = pair.Key;
|
|
var id1 = (int)(k >> HALF_LONG_BITS);
|
|
var id2 = (int)(k - (((long)id1) << HALF_LONG_BITS));
|
|
|
|
bool found = false;
|
|
foreach (var c in clusters)
|
|
{
|
|
if (c.Contains(id1))
|
|
{
|
|
c.Add(id2);
|
|
found = true;
|
|
break;
|
|
}
|
|
else if (c.Contains(id2))
|
|
{
|
|
c.Add(id1);
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
if (found == false)
|
|
{
|
|
var c = new HashSet<int>();
|
|
c.Add(id1);
|
|
c.Add(id2);
|
|
clusters.Add(c);
|
|
}
|
|
}
|
|
return clusters;
|
|
}
|
|
}
|
|
|
|
public enum Gender
|
|
{
|
|
Unknown, Male, Feemale
|
|
}
|
|
|
|
public class Person
|
|
{
|
|
public Gender Gender { get; set; }
|
|
public int Age { get; set; }
|
|
public long Number { get; set; }
|
|
|
|
private static (float[], Person) Generate(int vector_size)
|
|
{
|
|
var rnd = new Random((int)Environment.TickCount);
|
|
var vector = new float[vector_size];
|
|
DefaultRandomGenerator.Instance.NextFloats(vector);
|
|
VectorUtils.NormalizeSIMD(vector);
|
|
var p = new Person();
|
|
p.Age = rnd.Next(15, 80);
|
|
var gr = rnd.Next(0, 3);
|
|
p.Gender = (gr == 0) ? Gender.Male : (gr == 1) ? Gender.Feemale : Gender.Unknown;
|
|
p.Number = CreateNumber(rnd);
|
|
return (vector, p);
|
|
}
|
|
|
|
public static List<(float[], Person)> GenerateRandom(int vectorSize, int vectorsCount)
|
|
{
|
|
var vectors = new List<(float[], Person)>();
|
|
for (int i = 0; i < vectorsCount; i++)
|
|
{
|
|
vectors.Add(Generate(vectorSize));
|
|
}
|
|
return vectors;
|
|
}
|
|
|
|
static HashSet<long> _exists = new HashSet<long>();
|
|
private static long CreateNumber(Random rnd)
|
|
{
|
|
long start_number;
|
|
do
|
|
{
|
|
start_number = 79600000000L;
|
|
start_number = start_number + rnd.Next(4, 8) * 10000000;
|
|
start_number += rnd.Next(0, 1000000);
|
|
}
|
|
while (_exists.Add(start_number) == false);
|
|
return start_number;
|
|
}
|
|
}
|
|
|
|
private static List<float[]> RandomVectors(int vectorSize, int vectorsCount)
|
|
{
|
|
var vectors = new List<float[]>();
|
|
for (int i = 0; i < vectorsCount; i++)
|
|
{
|
|
var vector = new float[vectorSize];
|
|
DefaultRandomGenerator.Instance.NextFloats(vector);
|
|
VectorUtils.NormalizeSIMD(vector);
|
|
vectors.Add(vector);
|
|
}
|
|
return vectors;
|
|
}
|
|
|
|
|
|
static void Main(string[] args)
|
|
{
|
|
QuantizatorTest();
|
|
Console.WriteLine("Completed");
|
|
Console.ReadKey();
|
|
}
|
|
|
|
static void QAccuracityTest()
|
|
{
|
|
int K = 200;
|
|
var count = 5000;
|
|
var testCount = 500;
|
|
var dimensionality = 128;
|
|
var totalHits = new List<int>();
|
|
var timewatchesNP = new List<float>();
|
|
var timewatchesHNSW = new List<float>();
|
|
var q = new Quantizator(-1f, 1f);
|
|
|
|
var samples = RandomVectors(dimensionality, count).Select(v => q.QuantizeToLong(v)).ToList();
|
|
|
|
var sw = new Stopwatch();
|
|
|
|
var test = new QLVectorsDirectCompare(samples, CosineDistance.NonOptimized);
|
|
var world = new SmallWorld<long[]>(NSWOptions<long[]>.Create(8, 12, 100, 100, CosineDistance.NonOptimized));
|
|
|
|
sw.Start();
|
|
var ids = world.AddItems(samples.ToArray());
|
|
sw.Stop();
|
|
|
|
Console.WriteLine($"Insert {ids.Length} items: {sw.ElapsedMilliseconds} ms");
|
|
Console.WriteLine("Start test");
|
|
|
|
|
|
var test_vectors = RandomVectors(dimensionality, testCount).Select(v => q.QuantizeToLong(v)).ToList();
|
|
foreach (var v in test_vectors)
|
|
{
|
|
sw.Restart();
|
|
var gt = test.KNearest(v, K).ToDictionary(p => p.Item1, p => p.Item2);
|
|
sw.Stop();
|
|
timewatchesNP.Add(sw.ElapsedMilliseconds);
|
|
|
|
sw.Restart();
|
|
var result = world.Search(v, K);
|
|
sw.Stop();
|
|
|
|
timewatchesHNSW.Add(sw.ElapsedMilliseconds);
|
|
var hits = 0;
|
|
foreach (var r in result)
|
|
{
|
|
if (gt.ContainsKey(r.Item1))
|
|
{
|
|
hits++;
|
|
}
|
|
}
|
|
totalHits.Add(hits);
|
|
}
|
|
|
|
Console.WriteLine($"MIN Accuracity: {totalHits.Min() * 100 / K}%");
|
|
Console.WriteLine($"AVG Accuracity: {totalHits.Average() * 100 / K}%");
|
|
Console.WriteLine($"MAX Accuracity: {totalHits.Max() * 100 / K}%");
|
|
|
|
Console.WriteLine($"MIN HNSW TIME: {timewatchesHNSW.Min()} ms");
|
|
Console.WriteLine($"AVG HNSW TIME: {timewatchesHNSW.Average()} ms");
|
|
Console.WriteLine($"MAX HNSW TIME: {timewatchesHNSW.Max()} ms");
|
|
|
|
Console.WriteLine($"MIN NP TIME: {timewatchesNP.Min()} ms");
|
|
Console.WriteLine($"AVG NP TIME: {timewatchesNP.Average()} ms");
|
|
Console.WriteLine($"MAX NP TIME: {timewatchesNP.Max()} ms");
|
|
}
|
|
|
|
static void QInsertTimeExplosionTest()
|
|
{
|
|
var count = 10000;
|
|
var iterationCount = 100;
|
|
var dimensionality = 128;
|
|
var sw = new Stopwatch();
|
|
var world = new SmallWorld<long[]>(NSWOptions<long[]>.Create(6, 12, 100, 100, CosineDistance.NonOptimized));
|
|
var q = new Quantizator(-1f, 1f);
|
|
for (int i = 0; i < iterationCount; i++)
|
|
{
|
|
var samples = RandomVectors(dimensionality, count);
|
|
sw.Restart();
|
|
var ids = world.AddItems(samples.Select(v => q.QuantizeToLong(v)).ToArray());
|
|
sw.Stop();
|
|
Console.WriteLine($"ITERATION: [{i.ToString("D4")}] COUNT: [{ids.Length}] ELAPSED [{sw.ElapsedMilliseconds} ms]");
|
|
}
|
|
}
|
|
|
|
static void AccuracityTest()
|
|
{
|
|
int K = 200;
|
|
var count = 3000;
|
|
var testCount = 500;
|
|
var dimensionality = 128;
|
|
var totalHits = new List<int>();
|
|
var timewatchesNP = new List<float>();
|
|
var timewatchesHNSW = new List<float>();
|
|
|
|
var samples = RandomVectors(dimensionality, count);
|
|
|
|
var sw = new Stopwatch();
|
|
|
|
var test = new VectorsDirectCompare(samples, CosineDistance.NonOptimized);
|
|
var world = new SmallWorld<float[]>(NSWOptions<float[]>.Create(8, 12, 100, 100, CosineDistance.NonOptimized));
|
|
|
|
sw.Start();
|
|
var ids = world.AddItems(samples.ToArray());
|
|
sw.Stop();
|
|
|
|
/*
|
|
byte[] dump;
|
|
using (var ms = new MemoryStream())
|
|
{
|
|
world.Serialize(ms);
|
|
dump = ms.ToArray();
|
|
}
|
|
Console.WriteLine($"Full dump size: {dump.Length} bytes");
|
|
|
|
|
|
ReadOnlySmallWorld<float[]> world;
|
|
using (var ms = new MemoryStream(dump))
|
|
{
|
|
world = SmallWorld.CreateReadOnlyWorldFrom<float[]>(NSWReadOnlyOption<float[]>.Create(100, CosineDistance.NonOptimized, true, true, selectionHeuristic: NeighbourSelectionHeuristic.SelectSimple), ms);
|
|
}
|
|
*/
|
|
|
|
Console.WriteLine($"Insert {ids.Length} items: {sw.ElapsedMilliseconds} ms");
|
|
Console.WriteLine("Start test");
|
|
|
|
|
|
var test_vectors = RandomVectors(dimensionality, testCount);
|
|
foreach (var v in test_vectors)
|
|
{
|
|
sw.Restart();
|
|
var gt = test.KNearest(v, K).ToDictionary(p => p.Item1, p => p.Item2);
|
|
sw.Stop();
|
|
timewatchesNP.Add(sw.ElapsedMilliseconds);
|
|
|
|
sw.Restart();
|
|
var result = world.Search(v, K);
|
|
sw.Stop();
|
|
|
|
timewatchesHNSW.Add(sw.ElapsedMilliseconds);
|
|
var hits = 0;
|
|
foreach (var r in result)
|
|
{
|
|
if (gt.ContainsKey(r.Item1))
|
|
{
|
|
hits++;
|
|
}
|
|
}
|
|
totalHits.Add(hits);
|
|
}
|
|
|
|
Console.WriteLine($"MIN Accuracity: {totalHits.Min() * 100 / K}%");
|
|
Console.WriteLine($"AVG Accuracity: {totalHits.Average() * 100 / K}%");
|
|
Console.WriteLine($"MAX Accuracity: {totalHits.Max() * 100 / K}%");
|
|
|
|
Console.WriteLine($"MIN HNSW TIME: {timewatchesHNSW.Min()} ms");
|
|
Console.WriteLine($"AVG HNSW TIME: {timewatchesHNSW.Average()} ms");
|
|
Console.WriteLine($"MAX HNSW TIME: {timewatchesHNSW.Max()} ms");
|
|
|
|
Console.WriteLine($"MIN NP TIME: {timewatchesNP.Min()} ms");
|
|
Console.WriteLine($"AVG NP TIME: {timewatchesNP.Average()} ms");
|
|
Console.WriteLine($"MAX NP TIME: {timewatchesNP.Max()} ms");
|
|
}
|
|
|
|
static void QuantizatorTest()
|
|
{
|
|
var samples = RandomVectors(128, 500000);
|
|
var min = samples.SelectMany(s => s).Min();
|
|
var max = samples.SelectMany(s => s).Max();
|
|
var q = new Quantizator(min, max);
|
|
var q_samples = samples.Select(s => q.QuantizeToLong(s)).ToArray();
|
|
|
|
// comparing
|
|
var list = new List<float>();
|
|
for (int i = 0; i < samples.Count - 1; i++)
|
|
{
|
|
var v1 = samples[i];
|
|
var v2 = samples[i + 1];
|
|
var dist = CosineDistance.NonOptimized(v1, v2);
|
|
|
|
var qv1 = q_samples[i];
|
|
var qv2 = q_samples[i + 1];
|
|
var qdist = CosineDistance.NonOptimized(qv1, qv2);
|
|
|
|
list.Add(Math.Abs(dist - qdist));
|
|
}
|
|
|
|
Console.WriteLine($"Min diff: {list.Min()}");
|
|
Console.WriteLine($"Avg diff: {list.Average()}");
|
|
Console.WriteLine($"Max diff: {list.Max()}");
|
|
}
|
|
|
|
static void SaveRestoreTest()
|
|
{
|
|
var count = 1000;
|
|
var dimensionality = 128;
|
|
var samples = RandomVectors(dimensionality, count);
|
|
var world = new SmallWorld<float[]>(NSWOptions<float[]>.Create(6, 15, 200, 200, CosineDistance.ForUnits));
|
|
var sw = new Stopwatch();
|
|
sw.Start();
|
|
var ids = world.AddItems(samples.ToArray());
|
|
sw.Stop();
|
|
Console.WriteLine($"Insert {ids.Length} items on {sw.ElapsedMilliseconds} ms");
|
|
Console.WriteLine("Start test");
|
|
|
|
byte[] dump;
|
|
using (var ms = new MemoryStream())
|
|
{
|
|
world.Serialize(ms);
|
|
dump = ms.ToArray();
|
|
}
|
|
Console.WriteLine($"Full dump size: {dump.Length} bytes");
|
|
|
|
byte[] testDump;
|
|
var restoredWorld = new SmallWorld<float[]>(NSWOptions<float[]>.Create(6, 15, 200, 200, CosineDistance.ForUnits));
|
|
using (var ms = new MemoryStream(dump))
|
|
{
|
|
restoredWorld.Deserialize(ms);
|
|
}
|
|
|
|
using (var ms = new MemoryStream())
|
|
{
|
|
restoredWorld.Serialize(ms);
|
|
testDump = ms.ToArray();
|
|
}
|
|
if (testDump.Length != dump.Length)
|
|
{
|
|
Console.WriteLine($"Incorrect restored size. Got {testDump.Length}. Expected: {dump.Length}");
|
|
return;
|
|
}
|
|
}
|
|
|
|
static void InsertTimeExplosionTest()
|
|
{
|
|
var count = 10000;
|
|
var iterationCount = 100;
|
|
var dimensionality = 128;
|
|
var sw = new Stopwatch();
|
|
var world = new SmallWorld<float[]>(NSWOptions<float[]>.Create(6, 12, 100, 100, CosineDistance.NonOptimized));
|
|
for (int i = 0; i < iterationCount; i++)
|
|
{
|
|
var samples = RandomVectors(dimensionality, count);
|
|
sw.Restart();
|
|
var ids = world.AddItems(samples.ToArray());
|
|
sw.Stop();
|
|
Console.WriteLine($"ITERATION: [{i.ToString("D4")}] COUNT: [{ids.Length}] ELAPSED [{sw.ElapsedMilliseconds} ms]");
|
|
}
|
|
}
|
|
|
|
/*
|
|
static void TestOnMnist()
|
|
{
|
|
int imageCount, rowCount, colCount;
|
|
var buf = new byte[4];
|
|
var image = new byte[28 * 28];
|
|
var vectors = new List<float[]>();
|
|
using (var fs = new FileStream("t10k-images.idx3-ubyte", FileMode.Open, FileAccess.Read, FileShare.None))
|
|
{
|
|
// first 4 bytes is a magic number
|
|
fs.Read(buf, 0, 4);
|
|
// second 4 bytes is the number of images
|
|
fs.Read(buf, 0, 4);
|
|
imageCount = BitConverter.ToInt32(buf.Reverse().ToArray(), 0);
|
|
// third 4 bytes is the row count
|
|
fs.Read(buf, 0, 4);
|
|
rowCount = BitConverter.ToInt32(buf.Reverse().ToArray(), 0);
|
|
// fourth 4 bytes is the column count
|
|
fs.Read(buf, 0, 4);
|
|
colCount = BitConverter.ToInt32(buf.Reverse().ToArray(), 0);
|
|
|
|
for (int i = 0; i < imageCount; i++)
|
|
{
|
|
fs.Read(image, 0, image.Length);
|
|
vectors.Add(image.Select(b => (float)b).ToArray());
|
|
}
|
|
}
|
|
|
|
//var direct = new VectorsDirectCompare(vectors, Metrics.L2Euclidean);
|
|
|
|
var options = NSWOptions<float[]>.Create(8, 16, 200, 200, Metrics.L2Euclidean, selectionHeuristic: NeighbourSelectionHeuristic.SelectSimple);
|
|
SmallWorld<float[]> world;
|
|
if (File.Exists("graph.bin"))
|
|
{
|
|
using (var fs = new FileStream("graph.bin", FileMode.Open, FileAccess.Read, FileShare.None))
|
|
{
|
|
world = SmallWorld.CreateWorldFrom<float[]>(options, fs);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
world = SmallWorld.CreateWorld<float[]>(options);
|
|
world.AddItems(vectors);
|
|
using (var fs = new FileStream("graph.bin", FileMode.Create, FileAccess.Write, FileShare.None))
|
|
{
|
|
world.Serialize(fs);
|
|
}
|
|
}
|
|
|
|
var clusters = AutomaticGraphClusterer.DetectClusters(world);
|
|
Console.WriteLine($"Found {clusters.Count} clusters");
|
|
for (int i = 0; i < clusters.Count; i++)
|
|
{
|
|
Console.WriteLine($"Cluster {i + 1} countains {clusters[i].Count} items");
|
|
}
|
|
|
|
}
|
|
|
|
static void AutoClusteringTest()
|
|
{
|
|
var vectors = RandomVectors(128, 3000);
|
|
var world = SmallWorld.CreateWorld<float[]>(NSWOptions<float[]>.Create(8, 16, 200, 200, Metrics.L2Euclidean, selectionHeuristic: NeighbourSelectionHeuristic.SelectSimple));
|
|
world.AddItems(vectors);
|
|
var clusters = AutomaticGraphClusterer.DetectClusters(world);
|
|
Console.WriteLine($"Found {clusters.Count} clusters");
|
|
for (int i = 0; i < clusters.Count; i++)
|
|
{
|
|
Console.WriteLine($"Cluster {i + 1} countains {clusters[i].Count} items");
|
|
}
|
|
}
|
|
|
|
static void HistogramTest()
|
|
{
|
|
var vectors = RandomVectors(128, 3000);
|
|
var world = SmallWorld.CreateWorld<float[]>(NSWOptions<float[]>.Create(8, 16, 200, 200, Metrics.L2Euclidean, selectionHeuristic: NeighbourSelectionHeuristic.SelectSimple));
|
|
world.AddItems(vectors);
|
|
var histogram = world.GetHistogram();
|
|
|
|
int threshold = histogram.OTSU();
|
|
var min = histogram.Bounds[threshold - 1];
|
|
var max = histogram.Bounds[threshold];
|
|
var R = (max + min) / 2;
|
|
|
|
DrawHistogram(histogram, @"D:\hist.jpg");
|
|
}
|
|
|
|
static void DrawHistogram(Histogram histogram, string filename)
|
|
{
|
|
var wb = 1200 / histogram.Values.Length;
|
|
var k = 600.0f / (float)histogram.Values.Max();
|
|
|
|
var maxes = histogram.GetMaximums().ToDictionary(m => m.Index, m => m);
|
|
int threshold = histogram.OTSU();
|
|
|
|
using (var bmp = new Bitmap(1200, 600))
|
|
{
|
|
using (var g = Graphics.FromImage(bmp))
|
|
{
|
|
for (int i = 0; i<histogram.Values.Length; i++)
|
|
{
|
|
var height = (int)(histogram.Values[i] * k);
|
|
if (maxes.ContainsKey(i))
|
|
{
|
|
g.DrawRectangle(Pens.Red, i* wb, bmp.Height - height, wb, height);
|
|
g.DrawRectangle(Pens.Red, i* wb + 1, bmp.Height - height, wb - 1, height);
|
|
}
|
|
else
|
|
{
|
|
g.DrawRectangle(Pens.Blue, i * wb, bmp.Height - height, wb, height);
|
|
}
|
|
if (i == threshold)
|
|
{
|
|
g.DrawLine(Pens.Green, i * wb + wb / 2, 0, i * wb + wb / 2, bmp.Height);
|
|
}
|
|
}
|
|
}
|
|
bmp.Save(filename);
|
|
}
|
|
}
|
|
|
|
static void TransformToCompactWorldTest()
|
|
{
|
|
var count = 10000;
|
|
var dimensionality = 128;
|
|
var samples = RandomVectors(dimensionality, count);
|
|
var world = new SmallWorld<float[]>(NSWOptions<float[]>.Create(6, 15, 200, 200, CosineDistance.ForUnits));
|
|
var ids = world.AddItems(samples.ToArray());
|
|
|
|
Console.WriteLine("Start test");
|
|
|
|
byte[] dump;
|
|
using (var ms = new MemoryStream())
|
|
{
|
|
world.Serialize(ms);
|
|
dump = ms.ToArray();
|
|
}
|
|
Console.WriteLine($"Full dump size: {dump.Length} bytes");
|
|
|
|
ReadOnlySmallWorld<float[]> compactWorld;
|
|
using (var ms = new MemoryStream(dump))
|
|
{
|
|
compactWorld = SmallWorld.CreateReadOnlyWorldFrom<float[]>(NSWReadOnlyOption<float[]>.Create(200, CosineDistance.ForUnits), ms);
|
|
}
|
|
|
|
// Compare worlds outputs
|
|
int K = 200;
|
|
var hits = 0;
|
|
var miss = 0;
|
|
var testCount = 1000;
|
|
var sw = new Stopwatch();
|
|
var timewatchesHNSW = new List<float>();
|
|
var timewatchesHNSWCompact = new List<float>();
|
|
var test_vectors = RandomVectors(dimensionality, testCount);
|
|
|
|
foreach (var v in test_vectors)
|
|
{
|
|
sw.Restart();
|
|
var gt = world.Search(v, K).Select(e => e.Item1).ToHashSet();
|
|
sw.Stop();
|
|
timewatchesHNSW.Add(sw.ElapsedMilliseconds);
|
|
|
|
sw.Restart();
|
|
var result = compactWorld.Search(v, K).Select(e => e.Item1).ToHashSet();
|
|
sw.Stop();
|
|
timewatchesHNSWCompact.Add(sw.ElapsedMilliseconds);
|
|
|
|
foreach (var r in result)
|
|
{
|
|
if (gt.Contains(r))
|
|
{
|
|
hits++;
|
|
}
|
|
else
|
|
{
|
|
miss++;
|
|
}
|
|
}
|
|
}
|
|
|
|
byte[] smallWorldDump;
|
|
using (var ms = new MemoryStream())
|
|
{
|
|
compactWorld.Serialize(ms);
|
|
smallWorldDump = ms.ToArray();
|
|
}
|
|
var p = smallWorldDump.Length * 100.0f / dump.Length;
|
|
Console.WriteLine($"Compact dump size: {smallWorldDump.Length} bytes. Decrease: {100 - p}%");
|
|
|
|
Console.WriteLine($"HITS: {hits}");
|
|
Console.WriteLine($"MISSES: {miss}");
|
|
|
|
Console.WriteLine($"MIN HNSW TIME: {timewatchesHNSW.Min()} ms");
|
|
Console.WriteLine($"AVG HNSW TIME: {timewatchesHNSW.Average()} ms");
|
|
Console.WriteLine($"MAX HNSW TIME: {timewatchesHNSW.Max()} ms");
|
|
|
|
Console.WriteLine($"MIN HNSWCompact TIME: {timewatchesHNSWCompact.Min()} ms");
|
|
Console.WriteLine($"AVG HNSWCompact TIME: {timewatchesHNSWCompact.Average()} ms");
|
|
Console.WriteLine($"MAX HNSWCompact TIME: {timewatchesHNSWCompact.Max()} ms");
|
|
}
|
|
|
|
static void TransformToCompactWorldTestWithAccuracity()
|
|
{
|
|
var count = 10000;
|
|
var dimensionality = 128;
|
|
var samples = RandomVectors(dimensionality, count);
|
|
|
|
var test = new VectorsDirectCompare(samples, CosineDistance.ForUnits);
|
|
var world = new SmallWorld<float[]>(NSWOptions<float[]>.Create(6, 15, 200, 200, CosineDistance.ForUnits));
|
|
var ids = world.AddItems(samples.ToArray());
|
|
|
|
Console.WriteLine("Start test");
|
|
|
|
byte[] dump;
|
|
using (var ms = new MemoryStream())
|
|
{
|
|
world.Serialize(ms);
|
|
dump = ms.ToArray();
|
|
}
|
|
|
|
ReadOnlySmallWorld<float[]> compactWorld;
|
|
using (var ms = new MemoryStream(dump))
|
|
{
|
|
compactWorld = SmallWorld.CreateReadOnlyWorldFrom<float[]>(NSWReadOnlyOption<float[]>.Create(200, CosineDistance.ForUnits), ms);
|
|
}
|
|
|
|
// Compare worlds outputs
|
|
int K = 200;
|
|
var hits = 0;
|
|
var miss = 0;
|
|
|
|
var testCount = 2000;
|
|
var sw = new Stopwatch();
|
|
var timewatchesNP = new List<float>();
|
|
var timewatchesHNSW = new List<float>();
|
|
var timewatchesHNSWCompact = new List<float>();
|
|
var test_vectors = RandomVectors(dimensionality, testCount);
|
|
|
|
var totalHitsHNSW = new List<int>();
|
|
var totalHitsHNSWCompact = new List<int>();
|
|
|
|
foreach (var v in test_vectors)
|
|
{
|
|
var npHitsHNSW = 0;
|
|
var npHitsHNSWCompact = 0;
|
|
|
|
sw.Restart();
|
|
var gtNP = test.KNearest(v, K).Select(p => p.Item1).ToHashSet();
|
|
sw.Stop();
|
|
timewatchesNP.Add(sw.ElapsedMilliseconds);
|
|
|
|
sw.Restart();
|
|
var gt = world.Search(v, K).Select(e => e.Item1).ToHashSet();
|
|
sw.Stop();
|
|
timewatchesHNSW.Add(sw.ElapsedMilliseconds);
|
|
|
|
sw.Restart();
|
|
var result = compactWorld.Search(v, K).Select(e => e.Item1).ToHashSet();
|
|
sw.Stop();
|
|
timewatchesHNSWCompact.Add(sw.ElapsedMilliseconds);
|
|
|
|
foreach (var r in result)
|
|
{
|
|
if (gt.Contains(r))
|
|
{
|
|
hits++;
|
|
}
|
|
else
|
|
{
|
|
miss++;
|
|
}
|
|
if (gtNP.Contains(r))
|
|
{
|
|
npHitsHNSWCompact++;
|
|
}
|
|
}
|
|
|
|
foreach (var r in gt)
|
|
{
|
|
if (gtNP.Contains(r))
|
|
{
|
|
npHitsHNSW++;
|
|
}
|
|
}
|
|
|
|
totalHitsHNSW.Add(npHitsHNSW);
|
|
totalHitsHNSWCompact.Add(npHitsHNSWCompact);
|
|
}
|
|
|
|
byte[] smallWorldDump;
|
|
using (var ms = new MemoryStream())
|
|
{
|
|
compactWorld.Serialize(ms);
|
|
smallWorldDump = ms.ToArray();
|
|
}
|
|
var p = smallWorldDump.Length * 100.0f / dump.Length;
|
|
Console.WriteLine($"Full dump size: {dump.Length} bytes");
|
|
Console.WriteLine($"Compact dump size: {smallWorldDump.Length} bytes. Decrease: {100 - p}%");
|
|
|
|
Console.WriteLine($"HITS: {hits}");
|
|
Console.WriteLine($"MISSES: {miss}");
|
|
|
|
Console.WriteLine($"MIN NP TIME: {timewatchesNP.Min()} ms");
|
|
Console.WriteLine($"AVG NP TIME: {timewatchesNP.Average()} ms");
|
|
Console.WriteLine($"MAX NP TIME: {timewatchesNP.Max()} ms");
|
|
|
|
Console.WriteLine($"MIN HNSW TIME: {timewatchesHNSW.Min()} ms");
|
|
Console.WriteLine($"AVG HNSW TIME: {timewatchesHNSW.Average()} ms");
|
|
Console.WriteLine($"MAX HNSW TIME: {timewatchesHNSW.Max()} ms");
|
|
|
|
Console.WriteLine($"MIN HNSWCompact TIME: {timewatchesHNSWCompact.Min()} ms");
|
|
Console.WriteLine($"AVG HNSWCompact TIME: {timewatchesHNSWCompact.Average()} ms");
|
|
Console.WriteLine($"MAX HNSWCompact TIME: {timewatchesHNSWCompact.Max()} ms");
|
|
|
|
Console.WriteLine($"MIN HNSW Accuracity: {totalHitsHNSW.Min() * 100 / K}%");
|
|
Console.WriteLine($"AVG HNSW Accuracity: {totalHitsHNSW.Average() * 100 / K}%");
|
|
Console.WriteLine($"MAX HNSW Accuracity: {totalHitsHNSW.Max() * 100 / K}%");
|
|
|
|
Console.WriteLine($"MIN HNSWCompact Accuracity: {totalHitsHNSWCompact.Min() * 100 / K}%");
|
|
Console.WriteLine($"AVG HNSWCompact Accuracity: {totalHitsHNSWCompact.Average() * 100 / K}%");
|
|
Console.WriteLine($"MAX HNSWCompact Accuracity: {totalHitsHNSWCompact.Max() * 100 / K}%");
|
|
}
|
|
|
|
static void FilterTest()
|
|
{
|
|
var count = 1000;
|
|
var testCount = 100;
|
|
var dimensionality = 128;
|
|
var samples = Person.GenerateRandom(dimensionality, count);
|
|
|
|
var testDict = samples.ToDictionary(s => s.Item2.Number, s => s.Item2);
|
|
|
|
var map = new HNSWMap<long>();
|
|
var world = new SmallWorld<float[]>(NSWOptions<float[]>.Create(6, 15, 200, 200, CosineDistance.ForUnits, true, true, selectionHeuristic: NeighbourSelectionHeuristic.SelectSimple));
|
|
|
|
var ids = world.AddItems(samples.Select(i => i.Item1).ToArray());
|
|
for (int bi = 0; bi < samples.Count; bi++)
|
|
{
|
|
map.Append(samples[bi].Item2.Number, ids[bi]);
|
|
}
|
|
|
|
Console.WriteLine("Start test");
|
|
int K = 200;
|
|
var vectors = RandomVectors(dimensionality, testCount);
|
|
|
|
var context = new SearchContext()
|
|
.SetActiveNodes(map
|
|
.ConvertFeaturesToIds(samples
|
|
.Where(p => p.Item2.Age > 20 && p.Item2.Age < 50 && p.Item2.Gender == Gender.Feemale)
|
|
.Select(p => p.Item2.Number)));
|
|
|
|
var hits = 0;
|
|
var miss = 0;
|
|
foreach (var v in vectors)
|
|
{
|
|
var numbers = map.ConvertIdsToFeatures(world.Search(v, K, context).Select(r => r.Item1));
|
|
foreach (var r in numbers)
|
|
{
|
|
var record = testDict[r];
|
|
if (record.Gender == Gender.Feemale && record.Age > 20 && record.Age < 50)
|
|
{
|
|
hits++;
|
|
}
|
|
else
|
|
{
|
|
miss++;
|
|
}
|
|
}
|
|
}
|
|
Console.WriteLine($"SUCCESS: {hits}");
|
|
Console.WriteLine($"ERROR: {miss}");
|
|
}
|
|
*/
|
|
}
|
|
}
|