mirror of https://github.com/ogoun/Zero.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
152 lines
6.6 KiB
152 lines
6.6 KiB
extern alias CoreDrawing;
|
|
using Microsoft.ML.OnnxRuntime.Tensors;
|
|
using System;
|
|
using System.Collections.Generic;
|
|
using System.Threading.Tasks;
|
|
using ZeroLevel.ML.Services;
|
|
|
|
namespace ZeroLevel.ML.DNN.Models
|
|
{
|
|
public sealed class FastTensorPool
|
|
: IDisposable
|
|
{
|
|
public Tensor<float> Tensor;
|
|
public string Name = null!;
|
|
public string Path = null!;
|
|
public int CropSize;
|
|
public int Width;
|
|
public int Height;
|
|
public int SourceWidth;
|
|
public int SourceHeight;
|
|
public int BatchSize = -1; // -1 dynamic
|
|
public int TensorSize { get; private set; }
|
|
|
|
private Dictionary<int, TensorPoolItem> _index;
|
|
|
|
public FastTensorPool()
|
|
{
|
|
}
|
|
|
|
public FastTensorPool(int sourceWidth, int sourceHeight, int fullWidth, int fullHeight, int cropSize)
|
|
{
|
|
SourceWidth = sourceWidth;
|
|
SourceHeight = sourceHeight;
|
|
Width = fullWidth;
|
|
Height = fullHeight;
|
|
CropSize = cropSize;
|
|
}
|
|
|
|
public TensorPoolItem GetTensor(int tensorIndex) => _index[tensorIndex];
|
|
|
|
public void FillFromImage(CoreDrawing.System.Drawing.Bitmap image)
|
|
{
|
|
using (var scanner = new ImageScanner(image, CropSize))
|
|
{
|
|
_index = new Dictionary<int, TensorPoolItem>(scanner.TotalRegions);
|
|
TensorSize = scanner.TotalRegions;
|
|
var diff = BatchSize - scanner.TotalRegions;
|
|
var tensorSize = BatchSize == -1 ? scanner.TotalRegions : BatchSize;
|
|
Tensor = new DenseTensor<float>(new[] { tensorSize, 3, scanner.CropSizeX, scanner.CropSizeY });
|
|
var tasks = new Task[scanner.TotalRegions];
|
|
foreach (var regionReader in scanner.ScanByRegions())
|
|
{
|
|
var tensor = new TensorPoolItem(Tensor, regionReader.TensorIndex, regionReader.X, regionReader.Y, scanner.CropSizeX, scanner.CropSizeY);
|
|
_index[regionReader.TensorIndex] = tensor;
|
|
tasks[regionReader.TensorIndex] = Task.Factory.StartNew((_reader) =>
|
|
{
|
|
var reader = (ImageRegionReader)_reader;
|
|
reader.FillTensor(_index[reader.TensorIndex]);
|
|
}, regionReader);
|
|
}
|
|
Task.WaitAll(tasks);
|
|
}
|
|
}
|
|
|
|
public void FillFromImageInvertAxe(CoreDrawing.System.Drawing.Bitmap image)
|
|
{
|
|
using (var scanner = new ImageScanner(image, CropSize))
|
|
{
|
|
_index = new Dictionary<int, TensorPoolItem>(scanner.TotalRegions);
|
|
TensorSize = scanner.TotalRegions;
|
|
var diff = BatchSize - scanner.TotalRegions;
|
|
var tensorSize = BatchSize == -1 ? scanner.TotalRegions : BatchSize;
|
|
Tensor = new DenseTensor<float>(new[] { tensorSize, 3, scanner.CropSizeX, scanner.CropSizeY });
|
|
var tasks = new Task[scanner.TotalRegions];
|
|
foreach (var regionReader in scanner.ScanByRegions())
|
|
{
|
|
var tensor = new TensorPoolItem(Tensor, regionReader.TensorIndex, regionReader.X, regionReader.Y, scanner.CropSizeX, scanner.CropSizeY);
|
|
_index[regionReader.TensorIndex] = tensor;
|
|
tasks[regionReader.TensorIndex] = Task.Factory.StartNew((_reader) =>
|
|
{
|
|
var reader = (ImageRegionReader)_reader;
|
|
reader.Read((x, y, r, g, b) =>
|
|
{
|
|
_index[reader.TensorIndex].FastSet(y, x, r, g, b);
|
|
});
|
|
}, regionReader);
|
|
}
|
|
Task.WaitAll(tasks);
|
|
}
|
|
}
|
|
|
|
public void FillFromImageBGR(CoreDrawing.System.Drawing.Bitmap image)
|
|
{
|
|
using (var scanner = new ImageScanner(image, CropSize))
|
|
{
|
|
_index = new Dictionary<int, TensorPoolItem>(scanner.TotalRegions);
|
|
TensorSize = scanner.TotalRegions;
|
|
var diff = BatchSize - scanner.TotalRegions;
|
|
var tensorSize = BatchSize == -1 ? scanner.TotalRegions : BatchSize;
|
|
Tensor = new DenseTensor<float>(new[] { tensorSize, 3, scanner.CropSizeX, scanner.CropSizeY });
|
|
var tasks = new Task[scanner.TotalRegions];
|
|
foreach (var regionReader in scanner.ScanByRegions())
|
|
{
|
|
var tensor = new TensorPoolItem(Tensor, regionReader.TensorIndex, regionReader.X, regionReader.Y, scanner.CropSizeX, scanner.CropSizeY);
|
|
_index[regionReader.TensorIndex] = tensor;
|
|
tasks[regionReader.TensorIndex] = Task.Factory.StartNew((_reader) =>
|
|
{
|
|
var reader = (ImageRegionReader)_reader;
|
|
reader.Read((x, y, r, g, b) =>
|
|
{
|
|
_index[reader.TensorIndex].FastSet(x, y, b, g, r);
|
|
});
|
|
}, regionReader);
|
|
}
|
|
Task.WaitAll(tasks);
|
|
}
|
|
}
|
|
|
|
public void FillFromImageInvertAxeBGR(CoreDrawing.System.Drawing.Bitmap image)
|
|
{
|
|
using (var scanner = new ImageScanner(image, CropSize))
|
|
{
|
|
_index = new Dictionary<int, TensorPoolItem>(scanner.TotalRegions);
|
|
TensorSize = scanner.TotalRegions;
|
|
var diff = BatchSize - scanner.TotalRegions;
|
|
var tensorSize = BatchSize == -1 ? scanner.TotalRegions : BatchSize;
|
|
Tensor = new DenseTensor<float>(new[] { tensorSize, 3, scanner.CropSizeX, scanner.CropSizeY });
|
|
var tasks = new Task[scanner.TotalRegions];
|
|
foreach (var regionReader in scanner.ScanByRegions())
|
|
{
|
|
var tensor = new TensorPoolItem(Tensor, regionReader.TensorIndex, regionReader.X, regionReader.Y, scanner.CropSizeX, scanner.CropSizeY);
|
|
_index[regionReader.TensorIndex] = tensor;
|
|
tasks[regionReader.TensorIndex] = Task.Factory.StartNew((_reader) =>
|
|
{
|
|
var reader = (ImageRegionReader)_reader;
|
|
reader.Read((x, y, r, g, b) =>
|
|
{
|
|
_index[reader.TensorIndex].FastSet(y, x, b, g, r);
|
|
});
|
|
}, regionReader);
|
|
}
|
|
Task.WaitAll(tasks);
|
|
}
|
|
}
|
|
|
|
public void Dispose()
|
|
{
|
|
Tensor = null!;
|
|
}
|
|
}
|
|
}
|