You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Zero/TestHNSW/HNSWDemo/Program.cs

799 lines
31 KiB

using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Drawing;
using System.IO;
using System.Linq;
using ZeroLevel.HNSW;
using ZeroLevel.HNSW.Services;
using ZeroLevel.HNSW.Services.OPT;
using ZeroLevel.Services.Serialization;
namespace HNSWDemo
{
class Program
{
public class VectorsDirectCompare
{
private const int HALF_LONG_BITS = 32;
private readonly IList<float[]> _vectors;
private readonly Func<float[], float[], float> _distance;
public VectorsDirectCompare(List<float[]> vectors, Func<float[], float[], float> distance)
{
_vectors = vectors;
_distance = distance;
}
public IEnumerable<(int, float)> KNearest(float[] v, int k)
{
var weights = new Dictionary<int, float>();
for (int i = 0; i < _vectors.Count; i++)
{
var d = _distance(v, _vectors[i]);
weights[i] = d;
}
return weights.OrderBy(p => p.Value).Take(k).Select(p => (p.Key, p.Value));
}
public List<HashSet<int>> DetectClusters()
{
var links = new SortedList<long, float>();
for (int i = 0; i < _vectors.Count; i++)
{
for (int j = i + 1; j < _vectors.Count; j++)
{
long k = (((long)(i)) << HALF_LONG_BITS) + j;
links.Add(k, _distance(_vectors[i], _vectors[j]));
}
}
// 1. Find R - bound between intra-cluster distances and out-of-cluster distances
var histogram = new Histogram(HistogramMode.SQRT, links.Values);
int threshold = histogram.OTSU();
var min = histogram.Bounds[threshold - 1];
var max = histogram.Bounds[threshold];
var R = (max + min) / 2;
// 2. Get links with distances less than R
var resultLinks = new SortedList<long, float>();
foreach (var pair in links)
{
if (pair.Value < R)
{
resultLinks.Add(pair.Key, pair.Value);
}
}
// 3. Extract clusters
List<HashSet<int>> clusters = new List<HashSet<int>>();
foreach (var pair in resultLinks)
{
var k = pair.Key;
var id1 = (int)(k >> HALF_LONG_BITS);
var id2 = (int)(k - (((long)id1) << HALF_LONG_BITS));
bool found = false;
foreach (var c in clusters)
{
if (c.Contains(id1))
{
c.Add(id2);
found = true;
break;
}
else if (c.Contains(id2))
{
c.Add(id1);
found = true;
break;
}
}
if (found == false)
{
var c = new HashSet<int>();
c.Add(id1);
c.Add(id2);
clusters.Add(c);
}
}
return clusters;
}
}
public enum Gender
{
Unknown, Male, Feemale
}
public class Person
{
public Gender Gender { get; set; }
public int Age { get; set; }
public long Number { get; set; }
private static (float[], Person) Generate(int vector_size)
{
var rnd = new Random((int)Environment.TickCount);
var vector = new float[vector_size];
DefaultRandomGenerator.Instance.NextFloats(vector);
VectorUtils.NormalizeSIMD(vector);
var p = new Person();
p.Age = rnd.Next(15, 80);
var gr = rnd.Next(0, 3);
p.Gender = (gr == 0) ? Gender.Male : (gr == 1) ? Gender.Feemale : Gender.Unknown;
p.Number = CreateNumber(rnd);
return (vector, p);
}
public static List<(float[], Person)> GenerateRandom(int vectorSize, int vectorsCount)
{
var vectors = new List<(float[], Person)>();
for (int i = 0; i < vectorsCount; i++)
{
vectors.Add(Generate(vectorSize));
}
return vectors;
}
static HashSet<long> _exists = new HashSet<long>();
private static long CreateNumber(Random rnd)
{
long start_number;
do
{
start_number = 79600000000L;
start_number = start_number + rnd.Next(4, 8) * 10000000;
start_number += rnd.Next(0, 1000000);
}
while (_exists.Add(start_number) == false);
return start_number;
}
}
private static List<float[]> RandomVectors(int vectorSize, int vectorsCount)
{
var vectors = new List<float[]>();
for (int i = 0; i < vectorsCount; i++)
{
var vector = new float[vectorSize];
DefaultRandomGenerator.Instance.NextFloats(vector);
VectorUtils.NormalizeSIMD(vector);
vectors.Add(vector);
}
return vectors;
}
static void Main(string[] args)
{
OptAccuracityTest();
Console.WriteLine("Completed");
Console.ReadKey();
}
static void TestOnMnist()
{
int imageCount, rowCount, colCount;
var buf = new byte[4];
var image = new byte[28 * 28];
var vectors = new List<float[]>();
using (var fs = new FileStream("t10k-images.idx3-ubyte", FileMode.Open, FileAccess.Read, FileShare.None))
{
// first 4 bytes is a magic number
fs.Read(buf, 0, 4);
// second 4 bytes is the number of images
fs.Read(buf, 0, 4);
imageCount = BitConverter.ToInt32(buf.Reverse().ToArray(), 0);
// third 4 bytes is the row count
fs.Read(buf, 0, 4);
rowCount = BitConverter.ToInt32(buf.Reverse().ToArray(), 0);
// fourth 4 bytes is the column count
fs.Read(buf, 0, 4);
colCount = BitConverter.ToInt32(buf.Reverse().ToArray(), 0);
for (int i = 0; i < imageCount; i++)
{
fs.Read(image, 0, image.Length);
vectors.Add(image.Select(b => (float)b).ToArray());
}
}
//var direct = new VectorsDirectCompare(vectors, Metrics.L2Euclidean);
var options = NSWOptions<float[]>.Create(8, 16, 200, 200, Metrics.L2Euclidean, selectionHeuristic: NeighbourSelectionHeuristic.SelectSimple);
SmallWorld<float[]> world;
if (File.Exists("graph.bin"))
{
using (var fs = new FileStream("graph.bin", FileMode.Open, FileAccess.Read, FileShare.None))
{
world = SmallWorld.CreateWorldFrom<float[]>(options, fs);
}
}
else
{
world = SmallWorld.CreateWorld<float[]>(options);
world.AddItems(vectors);
using (var fs = new FileStream("graph.bin", FileMode.Create, FileAccess.Write, FileShare.None))
{
world.Serialize(fs);
}
}
var clusters = AutomaticGraphClusterer.DetectClusters(world);
Console.WriteLine($"Found {clusters.Count} clusters");
for (int i = 0; i < clusters.Count; i++)
{
Console.WriteLine($"Cluster {i + 1} countains {clusters[i].Count} items");
}
}
static void AutoClusteringTest()
{
var vectors = RandomVectors(128, 3000);
var world = SmallWorld.CreateWorld<float[]>(NSWOptions<float[]>.Create(8, 16, 200, 200, Metrics.L2Euclidean, selectionHeuristic: NeighbourSelectionHeuristic.SelectSimple));
world.AddItems(vectors);
var clusters = AutomaticGraphClusterer.DetectClusters(world);
Console.WriteLine($"Found {clusters.Count} clusters");
for (int i = 0; i < clusters.Count; i++)
{
Console.WriteLine($"Cluster {i + 1} countains {clusters[i].Count} items");
}
}
static void HistogramTest()
{
var vectors = RandomVectors(128, 3000);
var world = SmallWorld.CreateWorld<float[]>(NSWOptions<float[]>.Create(8, 16, 200, 200, Metrics.L2Euclidean, selectionHeuristic: NeighbourSelectionHeuristic.SelectSimple));
world.AddItems(vectors);
var histogram = world.GetHistogram();
int threshold = histogram.OTSU();
var min = histogram.Bounds[threshold - 1];
var max = histogram.Bounds[threshold];
var R = (max + min) / 2;
DrawHistogram(histogram, @"D:\hist.jpg");
}
static void DrawHistogram(Histogram histogram, string filename)
{
/* while (histogram.CountSignChanges() > 3)
{
histogram.Smooth();
}*/
var wb = 1200 / histogram.Values.Length;
var k = 600.0f / (float)histogram.Values.Max();
var maxes = histogram.GetMaximums().ToDictionary(m => m.Index, m => m);
int threshold = histogram.OTSU();
using (var bmp = new Bitmap(1200, 600))
{
using (var g = Graphics.FromImage(bmp)) {
for (int i = 0; i < histogram.Values.Length; i++)
{
var height = (int)(histogram.Values[i] * k);
if (maxes.ContainsKey(i))
{
g.DrawRectangle(Pens.Red, i * wb, bmp.Height - height, wb, height);
g.DrawRectangle(Pens.Red, i * wb + 1, bmp.Height - height, wb - 1, height);
}
else
{
g.DrawRectangle(Pens.Blue, i * wb, bmp.Height - height, wb, height);
}
if (i == threshold)
{
g.DrawLine(Pens.Green, i * wb + wb / 2, 0, i * wb + wb / 2, bmp.Height);
}
}
}
bmp.Save(filename);
}
}
static void TransformToCompactWorldTest()
{
var count = 10000;
var dimensionality = 128;
var samples = RandomVectors(dimensionality, count);
var world = new SmallWorld<float[]>(NSWOptions<float[]>.Create(6, 15, 200, 200, CosineDistance.ForUnits, true, true, selectionHeuristic: NeighbourSelectionHeuristic.SelectSimple));
var ids = world.AddItems(samples.ToArray());
Console.WriteLine("Start test");
byte[] dump;
using (var ms = new MemoryStream())
{
world.Serialize(ms);
dump = ms.ToArray();
}
Console.WriteLine($"Full dump size: {dump.Length} bytes");
ReadOnlySmallWorld<float[]> compactWorld;
using (var ms = new MemoryStream(dump))
{
compactWorld = SmallWorld.CreateReadOnlyWorldFrom<float[]>(NSWReadOnlyOption<float[]>.Create(200, CosineDistance.ForUnits, true, true, selectionHeuristic: NeighbourSelectionHeuristic.SelectSimple), ms);
}
// Compare worlds outputs
int K = 200;
var hits = 0;
var miss = 0;
var testCount = 1000;
var sw = new Stopwatch();
var timewatchesHNSW = new List<float>();
var timewatchesHNSWCompact = new List<float>();
var test_vectors = RandomVectors(dimensionality, testCount);
foreach (var v in test_vectors)
{
sw.Restart();
var gt = world.Search(v, K).Select(e => e.Item1).ToHashSet();
sw.Stop();
timewatchesHNSW.Add(sw.ElapsedMilliseconds);
sw.Restart();
var result = compactWorld.Search(v, K).Select(e => e.Item1).ToHashSet();
sw.Stop();
timewatchesHNSWCompact.Add(sw.ElapsedMilliseconds);
foreach (var r in result)
{
if (gt.Contains(r))
{
hits++;
}
else
{
miss++;
}
}
}
byte[] smallWorldDump;
using (var ms = new MemoryStream())
{
compactWorld.Serialize(ms);
smallWorldDump = ms.ToArray();
}
var p = smallWorldDump.Length * 100.0f / dump.Length;
Console.WriteLine($"Compact dump size: {smallWorldDump.Length} bytes. Decrease: {100 - p}%");
Console.WriteLine($"HITS: {hits}");
Console.WriteLine($"MISSES: {miss}");
Console.WriteLine($"MIN HNSW TIME: {timewatchesHNSW.Min()} ms");
Console.WriteLine($"AVG HNSW TIME: {timewatchesHNSW.Average()} ms");
Console.WriteLine($"MAX HNSW TIME: {timewatchesHNSW.Max()} ms");
Console.WriteLine($"MIN HNSWCompact TIME: {timewatchesHNSWCompact.Min()} ms");
Console.WriteLine($"AVG HNSWCompact TIME: {timewatchesHNSWCompact.Average()} ms");
Console.WriteLine($"MAX HNSWCompact TIME: {timewatchesHNSWCompact.Max()} ms");
}
static void TransformToCompactWorldTestWithAccuracity()
{
var count = 10000;
var dimensionality = 128;
var samples = RandomVectors(dimensionality, count);
var test = new VectorsDirectCompare(samples, CosineDistance.ForUnits);
var world = new SmallWorld<float[]>(NSWOptions<float[]>.Create(6, 15, 200, 200, CosineDistance.ForUnits, true, true, selectionHeuristic: NeighbourSelectionHeuristic.SelectSimple));
var ids = world.AddItems(samples.ToArray());
Console.WriteLine("Start test");
byte[] dump;
using (var ms = new MemoryStream())
{
world.Serialize(ms);
dump = ms.ToArray();
}
ReadOnlySmallWorld<float[]> compactWorld;
using (var ms = new MemoryStream(dump))
{
compactWorld = SmallWorld.CreateReadOnlyWorldFrom<float[]>(NSWReadOnlyOption<float[]>.Create(200, CosineDistance.ForUnits, true, true, selectionHeuristic: NeighbourSelectionHeuristic.SelectSimple), ms);
}
// Compare worlds outputs
int K = 200;
var hits = 0;
var miss = 0;
var testCount = 2000;
var sw = new Stopwatch();
var timewatchesNP = new List<float>();
var timewatchesHNSW = new List<float>();
var timewatchesHNSWCompact = new List<float>();
var test_vectors = RandomVectors(dimensionality, testCount);
var totalHitsHNSW = new List<int>();
var totalHitsHNSWCompact = new List<int>();
foreach (var v in test_vectors)
{
var npHitsHNSW = 0;
var npHitsHNSWCompact = 0;
sw.Restart();
var gtNP = test.KNearest(v, K).Select(p => p.Item1).ToHashSet();
sw.Stop();
timewatchesNP.Add(sw.ElapsedMilliseconds);
sw.Restart();
var gt = world.Search(v, K).Select(e => e.Item1).ToHashSet();
sw.Stop();
timewatchesHNSW.Add(sw.ElapsedMilliseconds);
sw.Restart();
var result = compactWorld.Search(v, K).Select(e => e.Item1).ToHashSet();
sw.Stop();
timewatchesHNSWCompact.Add(sw.ElapsedMilliseconds);
foreach (var r in result)
{
if (gt.Contains(r))
{
hits++;
}
else
{
miss++;
}
if (gtNP.Contains(r))
{
npHitsHNSWCompact++;
}
}
foreach (var r in gt)
{
if (gtNP.Contains(r))
{
npHitsHNSW++;
}
}
totalHitsHNSW.Add(npHitsHNSW);
totalHitsHNSWCompact.Add(npHitsHNSWCompact);
}
byte[] smallWorldDump;
using (var ms = new MemoryStream())
{
compactWorld.Serialize(ms);
smallWorldDump = ms.ToArray();
}
var p = smallWorldDump.Length * 100.0f / dump.Length;
Console.WriteLine($"Full dump size: {dump.Length} bytes");
Console.WriteLine($"Compact dump size: {smallWorldDump.Length} bytes. Decrease: {100 - p}%");
Console.WriteLine($"HITS: {hits}");
Console.WriteLine($"MISSES: {miss}");
Console.WriteLine($"MIN NP TIME: {timewatchesNP.Min()} ms");
Console.WriteLine($"AVG NP TIME: {timewatchesNP.Average()} ms");
Console.WriteLine($"MAX NP TIME: {timewatchesNP.Max()} ms");
Console.WriteLine($"MIN HNSW TIME: {timewatchesHNSW.Min()} ms");
Console.WriteLine($"AVG HNSW TIME: {timewatchesHNSW.Average()} ms");
Console.WriteLine($"MAX HNSW TIME: {timewatchesHNSW.Max()} ms");
Console.WriteLine($"MIN HNSWCompact TIME: {timewatchesHNSWCompact.Min()} ms");
Console.WriteLine($"AVG HNSWCompact TIME: {timewatchesHNSWCompact.Average()} ms");
Console.WriteLine($"MAX HNSWCompact TIME: {timewatchesHNSWCompact.Max()} ms");
Console.WriteLine($"MIN HNSW Accuracity: {totalHitsHNSW.Min() * 100 / K}%");
Console.WriteLine($"AVG HNSW Accuracity: {totalHitsHNSW.Average() * 100 / K}%");
Console.WriteLine($"MAX HNSW Accuracity: {totalHitsHNSW.Max() * 100 / K}%");
Console.WriteLine($"MIN HNSWCompact Accuracity: {totalHitsHNSWCompact.Min() * 100 / K}%");
Console.WriteLine($"AVG HNSWCompact Accuracity: {totalHitsHNSWCompact.Average() * 100 / K}%");
Console.WriteLine($"MAX HNSWCompact Accuracity: {totalHitsHNSWCompact.Max() * 100 / K}%");
}
static void SaveRestoreTest()
{
var count = 1000;
var dimensionality = 128;
var samples = RandomVectors(dimensionality, count);
var world = new SmallWorld<float[]>(NSWOptions<float[]>.Create(6, 15, 200, 200, CosineDistance.ForUnits, true, true, selectionHeuristic: NeighbourSelectionHeuristic.SelectSimple));
var sw = new Stopwatch();
sw.Start();
var ids = world.AddItems(samples.ToArray());
sw.Stop();
Console.WriteLine($"Insert {ids.Length} items on {sw.ElapsedMilliseconds} ms");
Console.WriteLine("Start test");
byte[] dump;
using (var ms = new MemoryStream())
{
world.Serialize(ms);
dump = ms.ToArray();
}
Console.WriteLine($"Full dump size: {dump.Length} bytes");
byte[] testDump;
var restoredWorld = new SmallWorld<float[]>(NSWOptions<float[]>.Create(6, 15, 200, 200, CosineDistance.ForUnits, true, true, selectionHeuristic: NeighbourSelectionHeuristic.SelectSimple));
using (var ms = new MemoryStream(dump))
{
restoredWorld.Deserialize(ms);
}
using (var ms = new MemoryStream())
{
restoredWorld.Serialize(ms);
testDump = ms.ToArray();
}
if (testDump.Length != dump.Length)
{
Console.WriteLine($"Incorrect restored size. Got {testDump.Length}. Expected: {dump.Length}");
return;
}
ReadOnlySmallWorld<float[]> compactWorld;
using (var ms = new MemoryStream(dump))
{
compactWorld = SmallWorld.CreateReadOnlyWorldFrom<float[]>(NSWReadOnlyOption<float[]>.Create(200, CosineDistance.ForUnits, true, true, selectionHeuristic: NeighbourSelectionHeuristic.SelectSimple), ms);
}
byte[] smallWorldDump;
using (var ms = new MemoryStream())
{
compactWorld.Serialize(ms);
smallWorldDump = ms.ToArray();
}
var p = smallWorldDump.Length * 100.0f / dump.Length;
Console.WriteLine($"Compact dump size: {smallWorldDump.Length} bytes. Decrease: {100 - p}%");
}
static void FilterTest()
{
var count = 1000;
var testCount = 100;
var dimensionality = 128;
var samples = Person.GenerateRandom(dimensionality, count);
var testDict = samples.ToDictionary(s => s.Item2.Number, s => s.Item2);
var map = new HNSWMap<long>();
var world = new SmallWorld<float[]>(NSWOptions<float[]>.Create(6, 15, 200, 200, CosineDistance.ForUnits, true, true, selectionHeuristic: NeighbourSelectionHeuristic.SelectSimple));
var ids = world.AddItems(samples.Select(i => i.Item1).ToArray());
for (int bi = 0; bi < samples.Count; bi++)
{
map.Append(samples[bi].Item2.Number, ids[bi]);
}
Console.WriteLine("Start test");
int K = 200;
var vectors = RandomVectors(dimensionality, testCount);
var context = new SearchContext()
.SetActiveNodes(map
.ConvertFeaturesToIds(samples
.Where(p => p.Item2.Age > 20 && p.Item2.Age < 50 && p.Item2.Gender == Gender.Feemale)
.Select(p => p.Item2.Number)));
var hits = 0;
var miss = 0;
foreach (var v in vectors)
{
var numbers = map.ConvertIdsToFeatures(world.Search(v, K, context).Select(r => r.Item1));
foreach (var r in numbers)
{
var record = testDict[r];
if (record.Gender == Gender.Feemale && record.Age > 20 && record.Age < 50)
{
hits++;
}
else
{
miss++;
}
}
}
Console.WriteLine($"SUCCESS: {hits}");
Console.WriteLine($"ERROR: {miss}");
}
static void AccuracityTest()
{
int K = 200;
var count = 2000;
var testCount = 1000;
var dimensionality = 128;
var totalHits = new List<int>();
var timewatchesNP = new List<float>();
var timewatchesHNSW = new List<float>();
var totalOptHits = new List<int>();
var timewatchesOptHNSW = new List<float>();
var samples = RandomVectors(dimensionality, count);
var sw = new Stopwatch();
var test = new VectorsDirectCompare(samples, Metrics.L2Euclidean);
var world = new SmallWorld<float[]>(NSWOptions<float[]>.Create(8, 15, 200, 200, Metrics.L2Euclidean, true, true, selectionHeuristic: NeighbourSelectionHeuristic.SelectSimple));
var opt_world = new OptWorld<float[]>(NSWOptions<float[]>.Create(8, 15, 200, 200, Metrics.L2Euclidean, true, true, selectionHeuristic: NeighbourSelectionHeuristic.SelectSimple));
sw.Start();
var ids = world.AddItems(samples.ToArray());
sw.Stop();
Console.WriteLine($"Insert {ids.Length} items: {sw.ElapsedMilliseconds} ms");
sw.Restart();
opt_world.AddItems(samples.ToArray());
sw.Stop();
Console.WriteLine($"Insert {ids.Length} items in OPT: {sw.ElapsedMilliseconds} ms");
Console.WriteLine("Start test");
var test_vectors = RandomVectors(dimensionality, testCount);
foreach (var v in test_vectors)
{
sw.Restart();
var gt = test.KNearest(v, K).ToDictionary(p => p.Item1, p => p.Item2);
sw.Stop();
timewatchesNP.Add(sw.ElapsedMilliseconds);
sw.Restart();
var result = world.Search(v, K);
sw.Stop();
timewatchesHNSW.Add(sw.ElapsedMilliseconds);
var hits = 0;
foreach (var r in result)
{
if (gt.ContainsKey(r.Item1))
{
hits++;
}
}
totalHits.Add(hits);
sw.Restart();
result = opt_world.Search(v, K);
sw.Stop();
timewatchesOptHNSW.Add(sw.ElapsedMilliseconds);
hits = 0;
foreach (var r in result)
{
if (gt.ContainsKey(r.Item1))
{
hits++;
}
}
totalOptHits.Add(hits);
}
Console.WriteLine($"MIN Accuracity: {totalHits.Min() * 100 / K}%");
Console.WriteLine($"AVG Accuracity: {totalHits.Average() * 100 / K}%");
Console.WriteLine($"MAX Accuracity: {totalHits.Max() * 100 / K}%");
Console.WriteLine($"MIN Opt Accuracity: {totalOptHits.Min() * 100 / K}%");
Console.WriteLine($"AVG Opt Accuracity: {totalOptHits.Average() * 100 / K}%");
Console.WriteLine($"MAX Opt Accuracity: {totalOptHits.Max() * 100 / K}%");
Console.WriteLine($"MIN HNSW TIME: {timewatchesHNSW.Min()} ms");
Console.WriteLine($"AVG HNSW TIME: {timewatchesHNSW.Average()} ms");
Console.WriteLine($"MAX HNSW TIME: {timewatchesHNSW.Max()} ms");
Console.WriteLine($"MIN Opt HNSW TIME: {timewatchesOptHNSW.Min()} ms");
Console.WriteLine($"AVG Opt HNSW TIME: {timewatchesOptHNSW.Average()} ms");
Console.WriteLine($"MAX Opt HNSW TIME: {timewatchesOptHNSW.Max()} ms");
Console.WriteLine($"MIN NP TIME: {timewatchesNP.Min()} ms");
Console.WriteLine($"AVG NP TIME: {timewatchesNP.Average()} ms");
Console.WriteLine($"MAX NP TIME: {timewatchesNP.Max()} ms");
}
static void OptAccuracityTest()
{
int K = 200;
var count = 5000;
var testCount = 1000;
var dimensionality = 128;
var timewatchesNP = new List<float>();
var totalOptHits = new List<int>();
var timewatchesOptHNSW = new List<float>();
var totalRestoredHits = new List<int>();
var timewatchesRestoredHNSW = new List<float>();
var samples = RandomVectors(dimensionality, count);
var sw = new Stopwatch();
var test = new VectorsDirectCompare(samples, Metrics.L2Euclidean);
var opt_world = new OptWorld<float[]>(NSWOptions<float[]>.Create(8, 16, 200, 200, Metrics.L2Euclidean, true, true, selectionHeuristic: NeighbourSelectionHeuristic.SelectSimple));
sw.Restart();
var ids = opt_world.AddItems(samples.ToArray());
sw.Stop();
Console.WriteLine($"Insert {ids.Length} items in OPT: {sw.ElapsedMilliseconds} ms");
byte[] dump;
using (var ms = new MemoryStream())
{
opt_world.Serialize(ms);
dump = ms.ToArray();
}
SmallWorld<float[]> compactWorld;
using (var ms = new MemoryStream(dump))
{
compactWorld = SmallWorld.CreateWorldFrom<float[]>(NSWOptions<float[]>.Create(8, 16, 200, 200, Metrics.L2Euclidean, true, true, selectionHeuristic: NeighbourSelectionHeuristic.SelectSimple), ms);
}
Console.WriteLine("Start test");
var test_vectors = RandomVectors(dimensionality, testCount);
foreach (var v in test_vectors)
{
sw.Restart();
var gt = test.KNearest(v, K).ToDictionary(p => p.Item1, p => p.Item2);
sw.Stop();
timewatchesNP.Add(sw.ElapsedMilliseconds);
sw.Restart();
var result = opt_world.Search(v, K).ToArray();
sw.Stop();
timewatchesOptHNSW.Add(sw.ElapsedMilliseconds);
var hits = 0;
foreach (var r in result)
{
if (gt.ContainsKey(r.Item1))
{
hits++;
}
}
totalOptHits.Add(hits);
sw.Restart();
result = compactWorld.Search(v, K).ToArray();
sw.Stop();
timewatchesRestoredHNSW.Add(sw.ElapsedMilliseconds);
hits = 0;
foreach (var r in result)
{
if (gt.ContainsKey(r.Item1))
{
hits++;
}
}
totalRestoredHits.Add(hits);
}
Console.WriteLine($"MIN Opt Accuracity: {totalOptHits.Min() * 100 / K}%");
Console.WriteLine($"AVG Opt Accuracity: {totalOptHits.Average() * 100 / K}%");
Console.WriteLine($"MAX Opt Accuracity: {totalOptHits.Max() * 100 / K}%");
Console.WriteLine($"MIN Test Accuracity: {totalRestoredHits.Min() * 100 / K}%");
Console.WriteLine($"AVG Test Accuracity: {totalRestoredHits.Average() * 100 / K}%");
Console.WriteLine($"MAX Test Accuracity: {totalRestoredHits.Max() * 100 / K}%");
Console.WriteLine($"MIN Opt HNSW TIME: {timewatchesOptHNSW.Min()} ms");
Console.WriteLine($"AVG Opt HNSW TIME: {timewatchesOptHNSW.Average()} ms");
Console.WriteLine($"MAX Opt HNSW TIME: {timewatchesOptHNSW.Max()} ms");
Console.WriteLine($"MIN Test HNSW TIME: {timewatchesRestoredHNSW.Min()} ms");
Console.WriteLine($"AVG Test HNSW TIME: {timewatchesRestoredHNSW.Average()} ms");
Console.WriteLine($"MAX Test HNSW TIME: {timewatchesRestoredHNSW.Max()} ms");
Console.WriteLine($"MIN NP TIME: {timewatchesNP.Min()} ms");
Console.WriteLine($"AVG NP TIME: {timewatchesNP.Average()} ms");
Console.WriteLine($"MAX NP TIME: {timewatchesNP.Max()} ms");
}
}
}

Powered by TurnKey Linux.