You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Zero/ZeroLevel.HNSW/Services/OPT/OptLayer.cs

512 lines
20 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

using System;
using System.Collections.Generic;
using System.Linq;
using ZeroLevel.Services.Serialization;
namespace ZeroLevel.HNSW.Services.OPT
{
/// <summary>
/// NSW graph
/// </summary>
internal sealed class OptLayer<TItem>
: IBinarySerializable
{
private readonly NSWOptions<TItem> _options;
private readonly VectorSet<TItem> _vectors;
private readonly CompactBiDirectionalLinksSet _links;
internal SortedList<long, float> Links => _links.Links;
/// <summary>
/// There are links е the layer
/// </summary>
internal bool HasLinks => (_links.Count > 0);
/// <summary>
/// HNSW layer
/// </summary>
/// <param name="options">HNSW graph options</param>
/// <param name="vectors">General vector set</param>
internal OptLayer(NSWOptions<TItem> options, VectorSet<TItem> vectors)
{
_options = options;
_vectors = vectors;
_links = new CompactBiDirectionalLinksSet();
}
/// <summary>
/// Adding new bidirectional link
/// </summary>
/// <param name="q">New node</param>
/// <param name="p">The node with which the connection will be made</param>
/// <param name="qpDistance"></param>
/// <param name="isMapLayer"></param>
internal void AddBidirectionallConnections(int q, int p, float qpDistance, bool isMapLayer)
{
// поиск в ширину ближайших узлов к найденному
var nearest = _links.FindLinksForId(p).ToArray();
// если у найденного узла максимальное количество связей
// if │eConn│ > Mmax // shrink connections of e
if (nearest.Length >= (isMapLayer ? _options.M * 2 : _options.M))
{
// ищем связь с самой большой дистанцией
float distance = nearest[0].Item3;
int index = 0;
for (int ni = 1; ni < nearest.Length; ni++)
{
// Если осталась ссылка узла на себя, удаляем ее в первую очередь
if (nearest[ni].Item1 == nearest[ni].Item2)
{
index = ni;
break;
}
if (nearest[ni].Item3 > distance)
{
index = ni;
distance = nearest[ni].Item3;
}
}
// делаем перелинковку вставляя новый узел между найденными
var id1 = nearest[index].Item1;
var id2 = nearest[index].Item2;
_links.Relink(id1, id2, q, qpDistance, _options.Distance(_vectors[id2], _vectors[q]));
}
else
{
if (nearest.Length == 1 && nearest[0].Item1 == nearest[0].Item2)
{
// убираем связи на самих себя
var id1 = nearest[0].Item1;
var id2 = nearest[0].Item2;
_links.Relink(id1, id2, q, qpDistance, _options.Distance(_vectors[id2], _vectors[q]));
}
else
{
// добавляем связь нового узла к найденному
_links.Add(q, p, qpDistance);
}
}
}
/// <summary>
/// Adding a node with a connection to itself
/// </summary>
/// <param name="q"></param>
internal void Append(int q)
{
_links.Add(q, q, 0);
}
#region Implementation of https://arxiv.org/ftp/arxiv/papers/1603/1603.09320.pdf
/// <summary>
/// Algorithm 2
/// </summary>
/// <param name="q">query element</param>
/// <param name="ep">enter points ep</param>
/// <returns>Output: ef closest neighbors to q</returns>
internal IEnumerable<(int, float)> KNearestAtLayer(int entryPointId, Func<int, float> targetCosts, IEnumerable<(int, float)> w, int ef)
{
/*
* v ← ep // set of visited elements
* C ← ep // set of candidates
* W ← ep // dynamic list of found nearest neighbors
* while │C│ > 0
* c ← extract nearest element from C to q
* f ← get furthest element from W to q
* if distance(c, q) > distance(f, q)
* break // all elements in W are evaluated
* for each e ∈ neighbourhood(c) at layer lc // update C and W
* if e ∉ v
* v ← v e
* f ← get furthest element from W to q
* if distance(e, q) < distance(f, q) or │W│ < ef
* C ← C e
* W ← W e
* if │W│ > ef
* remove furthest element from W to q
* return W
*/
var v = new VisitedBitSet(_vectors.Count, _options.M);
// v ← ep // set of visited elements
v.Add(entryPointId);
var W = new MaxHeap(ef + 1);
foreach (var i in w) W.Push(i);
var d = targetCosts(entryPointId);
// C ← ep // set of candidates
var C = new MinHeap(ef);
C.Push((entryPointId, d));
// W ← ep // dynamic list of found nearest neighbors
W.Push((entryPointId, d));
int farthestId;
float farthestDistance;
// run bfs
while (C.Count > 0)
{
// get next candidate to check and expand
var toExpand = C.Pop();
if (W.TryPeek(out _, out farthestDistance) && toExpand.Item2 > farthestDistance)
{
// the closest candidate is farther than farthest result
break;
}
// expand candidate
var neighboursIds = GetNeighbors(toExpand.Item1).ToArray();
for (int i = 0; i < neighboursIds.Length; ++i)
{
int neighbourId = neighboursIds[i];
if (!v.Contains(neighbourId))
{
// enqueue perspective neighbours to expansion list
W.TryPeek(out farthestId, out farthestDistance);
var neighbourDistance = targetCosts(neighbourId);
if (W.Count < ef || (farthestId >= 0 && neighbourDistance < farthestDistance))
{
C.Push((neighbourId, neighbourDistance));
W.Push((neighbourId, neighbourDistance));
if (W.Count > ef)
{
W.Pop();
}
}
v.Add(neighbourId);
}
}
}
C.Clear();
v.Clear();
return W;
}
/// <summary>
/// Algorithm 2
/// </summary>
/// <param name="q">query element</param>
/// <param name="ep">enter points ep</param>
/// <returns>Output: ef closest neighbors to q</returns>
internal IEnumerable<(int, float)> KNearestAtLayer(int entryPointId, Func<int, float> targetCosts, IEnumerable<(int, float)> w, int ef, SearchContext context)
{
/*
* v ← ep // set of visited elements
* C ← ep // set of candidates
* W ← ep // dynamic list of found nearest neighbors
* while │C│ > 0
* c ← extract nearest element from C to q
* f ← get furthest element from W to q
* if distance(c, q) > distance(f, q)
* break // all elements in W are evaluated
* for each e ∈ neighbourhood(c) at layer lc // update C and W
* if e ∉ v
* v ← v e
* f ← get furthest element from W to q
* if distance(e, q) < distance(f, q) or │W│ < ef
* C ← C e
* W ← W e
* if │W│ > ef
* remove furthest element from W to q
* return W
*/
var v = new VisitedBitSet(_vectors.Count, _options.M);
// v ← ep // set of visited elements
v.Add(entryPointId);
var W = new MaxHeap(ef + 1);
foreach (var i in w) W.Push(i);
// C ← ep // set of candidates
var C = new MinHeap(ef);
var d = targetCosts(entryPointId);
C.Push((entryPointId, d));
// W ← ep // dynamic list of found nearest neighbors
if (context.IsActiveNode(entryPointId))
{
W.Push((entryPointId, d));
}
// run bfs
while (C.Count > 0)
{
// get next candidate to check and expand
var toExpand = C.Pop();
if (W.Count > 0)
{
if(W.TryPeek(out _, out var dist ))
if (toExpand.Item2 > dist)
{
// the closest candidate is farther than farthest result
break;
}
}
// expand candidate
var neighboursIds = GetNeighbors(toExpand.Item1).ToArray();
for (int i = 0; i < neighboursIds.Length; ++i)
{
int neighbourId = neighboursIds[i];
if (!v.Contains(neighbourId))
{
// enqueue perspective neighbours to expansion list
var neighbourDistance = targetCosts(neighbourId);
if (context.IsActiveNode(neighbourId))
{
if (W.Count < ef || (W.Count > 0 && (W.TryPeek(out _, out var dist) && neighbourDistance < dist)))
{
W.Push((neighbourId, neighbourDistance));
if (W.Count > ef)
{
W.Pop();
}
}
}
if (W.Count < ef)
{
C.Push((neighbourId, neighbourDistance));
}
v.Add(neighbourId);
}
}
}
C.Clear();
v.Clear();
return W;
}
/// <summary>
/// Algorithm 2, modified for LookAlike
/// </summary>
/// <param name="q">query element</param>
/// <param name="ep">enter points ep</param>
/// <returns>Output: ef closest neighbors to q</returns>
internal IEnumerable<(int, float)> KNearestAtLayer(IEnumerable<(int, float)> w, int ef, SearchContext context)
{
/*
* v ← ep // set of visited elements
* C ← ep // set of candidates
* W ← ep // dynamic list of found nearest neighbors
* while │C│ > 0
* c ← extract nearest element from C to q
* f ← get furthest element from W to q
* if distance(c, q) > distance(f, q)
* break // all elements in W are evaluated
* for each e ∈ neighbourhood(c) at layer lc // update C and W
* if e ∉ v
* v ← v e
* f ← get furthest element from W to q
* if distance(e, q) < distance(f, q) or │W│ < ef
* C ← C e
* W ← W e
* if │W│ > ef
* remove furthest element from W to q
* return W
*/
// v ← ep // set of visited elements
var v = new VisitedBitSet(_vectors.Count, _options.M);
// C ← ep // set of candidates
var C = new MinHeap(ef);
foreach (var ep in context.EntryPoints)
{
var neighboursIds = GetNeighbors(ep).ToArray();
for (int i = 0; i < neighboursIds.Length; ++i)
{
C.Push((ep, _links.Distance(ep, neighboursIds[i])));
}
v.Add(ep);
}
// W ← ep // dynamic list of found nearest neighbors
var W = new MaxHeap(ef + 1);
foreach (var i in w) W.Push(i);
// run bfs
while (C.Count > 0)
{
// get next candidate to check and expand
var toExpand = C.Pop();
if (W.Count > 0)
{
if (W.TryPeek(out _, out var dist) && toExpand.Item2 > dist)
{
// the closest candidate is farther than farthest result
break;
}
}
if (context.IsActiveNode(toExpand.Item1))
{
if (W.Count < ef || W.Count == 0 || (W.Count > 0 && (W.TryPeek(out _, out var dist) && toExpand.Item2 < dist)))
{
W.Push((toExpand.Item1, toExpand.Item2));
if (W.Count > ef)
{
W.Pop();
}
}
}
}
if (W.Count > ef)
{
while (W.Count > ef)
{
W.Pop();
}
return W;
}
else
{
foreach (var c in W)
{
C.Push((c.Item1, c.Item2));
}
}
while (C.Count > 0)
{
// get next candidate to check and expand
var toExpand = C.Pop();
// expand candidate
var neighboursIds = GetNeighbors(toExpand.Item1).ToArray();
for (int i = 0; i < neighboursIds.Length; ++i)
{
int neighbourId = neighboursIds[i];
if (!v.Contains(neighbourId))
{
// enqueue perspective neighbours to expansion list
var neighbourDistance = _links.Distance(toExpand.Item1, neighbourId);
if (context.IsActiveNode(neighbourId))
{
if (W.Count < ef || (W.Count > 0 && (W.TryPeek(out _, out var dist) && neighbourDistance < dist)))
{
W.Push((neighbourId, neighbourDistance));
if (W.Count > ef)
{
W.Pop();
}
}
}
if (W.Count < ef)
{
C.Push((neighbourId, neighbourDistance));
}
v.Add(neighbourId);
}
}
}
C.Clear();
v.Clear();
return W;
}
/// <summary>
/// Algorithm 3
/// </summary>
internal MaxHeap SELECT_NEIGHBORS_SIMPLE(IEnumerable<(int, float)> w, int M)
{
var W = new MaxHeap(w.Count());
foreach (var i in w) W.Push(i);
var bestN = M;
if (W.Count > bestN)
{
while (W.Count > bestN)
{
W.Pop();
}
}
return W;
}
/// <summary>
/// Algorithm 4
/// </summary>
/// <param name="q">base element</param>
/// <param name="C">candidate elements</param>
/// <param name="extendCandidates">flag indicating whether or not to extend candidate list</param>
/// <param name="keepPrunedConnections">flag indicating whether or not to add discarded elements</param>
/// <returns>Output: M elements selected by the heuristic</returns>
internal MaxHeap SELECT_NEIGHBORS_HEURISTIC(Func<int, float> distance, IEnumerable<(int, float)> w, int M)
{
// R ← ∅
var R = new MaxHeap(_options.EFConstruction);
// W ← C // working queue for the candidates
var W = new MaxHeap(_options.EFConstruction + 1);
foreach (var i in w) W.Push(i);
// if extendCandidates // extend candidates by their neighbors
if (_options.ExpandBestSelection)
{
var extendBuffer = new HashSet<int>();
// for each e ∈ C
foreach (var e in W)
{
var neighbors = GetNeighbors(e.Item1);
// for each e_adj ∈ neighbourhood(e) at layer lc
foreach (var e_adj in neighbors)
{
// if eadj ∉ W
if (extendBuffer.Contains(e_adj) == false)
{
extendBuffer.Add(e_adj);
}
}
}
// W ← W eadj
foreach (var id in extendBuffer)
{
W.Push((id, distance(id)));
}
}
// Wd ← ∅ // queue for the discarded candidates
var Wd = new MinHeap(_options.EFConstruction);
// while │W│ > 0 and │R│< M
while (W.Count > 0 && R.Count < M)
{
// e ← extract nearest element from W to q
var (e, ed) = W.Pop();
var (fe, fd) = R.Pop();
// if e is closer to q compared to any element from R
if (R.Count == 0 ||
ed < fd)
{
// R ← R e
R.Push((e, ed));
}
else
{
// Wd ← Wd e
Wd.Push((e, ed));
}
}
// if keepPrunedConnections // add some of the discarded // connections from Wd
if (_options.KeepPrunedConnections)
{
// while │Wd│> 0 and │R│< M
while (Wd.Count > 0 && R.Count < M)
{
// R ← R extract nearest element from Wd to q
var nearest = Wd.Pop();
R.Push((nearest.Item1, nearest.Item2));
}
}
// return R
return R;
}
#endregion
private IEnumerable<int> GetNeighbors(int id) => _links.FindLinksForId(id).Select(d => d.Item2);
public void Serialize(IBinaryWriter writer)
{
_links.Serialize(writer);
}
public void Deserialize(IBinaryReader reader)
{
_links.Deserialize(reader);
}
internal Histogram GetHistogram(HistogramMode mode) => _links.CalculateHistogram(mode);
}
}

Powered by TurnKey Linux.