You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Zero/ZeroLevel.ML/DNN/Detectors/DamodetDetector.cs

143 lines
5.8 KiB

using Microsoft.ML.OnnxRuntime.Tensors;
using System;
using System.Collections.Generic;
using ZeroLevel.ML.DNN.Models;
namespace ZeroLevel.ML.DNN.Detectors
{
/// <summary>
/// DamoYolo and FastestDet models combination
/// </summary>
public class DamodetDetector
: SSDNN, IObjectDetector
{
private const float SIZE = 640;
public DamodetDetector(string modelPath, int deviceId)
: base(modelPath, deviceId)
{
}
public float RNorm(float x) => x;
public float BNorm(float x) => x;
public float GNorm(float x) => x;
#region FastestDet
private static double sigmoid(double x)
{
return 1d / (1d + Math.Exp(-x));
}
private static double tanh(double x)
{
return 2d / (1d + Math.Exp(-2d * x)) - 1d;
}
private void FastestDetPostprocess(FastTensorPool inputs, Tensor<float> output, List<YoloPrediction> result, float threshold)
{
var relative_koef_x = 1.0f / inputs.Width;
var relative_koef_y = 1.0f / inputs.Height;
var feature_map_height = output.Dimensions[2];
var feature_map_width = output.Dimensions[3];
for (int tensorIndex = 0; tensorIndex < inputs.TensorSize; tensorIndex++)
{
var tensor = inputs.GetTensor(tensorIndex);
for (int h = 0; h < feature_map_height; h++)
{
for (int w = 0; w < feature_map_width; w++)
{
var obj_score = output[tensorIndex, 0, h, w];
var cls_score = output[tensorIndex, 5, h, w];
var score = Math.Pow(obj_score, 0.6) * Math.Pow(cls_score, 0.4);
if (score > threshold)
{
var x_offset = tanh(output[tensorIndex, 1, h, w]);
var y_offset = tanh(output[tensorIndex, 2, h, w]);
var box_width = sigmoid(output[tensorIndex, 3, h, w]) * SIZE;
var box_height = sigmoid(output[tensorIndex, 4, h, w]) * SIZE;
var box_cx = ((w + x_offset) / feature_map_width) * SIZE + tensor.StartX;
var box_cy = ((h + y_offset) / feature_map_height) * SIZE + tensor.StartY;
result.Add(new YoloPrediction
{
Cx = (float)box_cx * relative_koef_x,
Cy = (float)box_cy * relative_koef_y,
W = (float)box_width * relative_koef_x,
H = (float)box_height * relative_koef_y,
Class = 0,
Score = (float)score
});
}
}
}
}
}
#endregion
#region DamoYolo
private void DamoYoloPostprocess(FastTensorPool inputs, Tensor<float> scores, Tensor<float> boxes, List<YoloPrediction> result, float threshold)
{
var relative_koef_x = 1.0f / inputs.Width;
var relative_koef_y = 1.0f / inputs.Height;
for (int tensorIndex = 0; tensorIndex < inputs.TensorSize; tensorIndex++)
{
var tensor = inputs.GetTensor(tensorIndex);
for (int box = 0; box < scores.Dimensions[1]; box++)
{
var conf = scores[tensorIndex, box, 0]; // уверенность в наличии любого объекта
if (conf > threshold)
{
// Перевод относительно входа модели в относительные координаты
var x1 = boxes[tensorIndex, box, 1];
var y1 = boxes[tensorIndex, box, 0];
var x2 = boxes[tensorIndex, box, 3];
var y2 = boxes[tensorIndex, box, 2];
var cx = (x1 + x2) / 2;
var cy = (y1 + y2) / 2;
var w = x2 - x1;
var h = y2 - y1;
// Перевод в координаты отнисительно текущего смещения
cx += tensor.StartX;
cy += tensor.StartY;
result.Add(new YoloPrediction
{
Cx = cx * relative_koef_x,
Cy = cy * relative_koef_y,
W = w * relative_koef_x,
H = h * relative_koef_y,
Class = 0,
Label = "0",
Score = conf
});
}
}
}
}
#endregion
private static float _fastest_threshold = 0.932f;
public List<YoloPrediction> Predict(FastTensorPool inputs, float threshold)
{
var result = new List<YoloPrediction>();
var relative_koef_x = 1.0f / inputs.Width;
var relative_koef_y = 1.0f / inputs.Height;
Extract(new Dictionary<string, Tensor<float>> { { "images", inputs.Tensor } }, d =>
{
Tensor<float> damo_scores = d["scores"];
Tensor<float> damo_boxes = d["boxes"];
Tensor<float> fastest_output = d["output"];
DamoYoloPostprocess(inputs, damo_scores, damo_boxes, result, threshold);
FastestDetPostprocess(inputs, fastest_output, result, _fastest_threshold);
});
NMS.Apply(result);
return result;
}
}
}

Powered by TurnKey Linux.