|
|
|
@ -0,0 +1,55 @@
|
|
|
|
|
using Microsoft.ML.OnnxRuntime.Tensors;
|
|
|
|
|
using SixLabors.ImageSharp;
|
|
|
|
|
using ZeroLevel.NN.Models;
|
|
|
|
|
|
|
|
|
|
namespace ZeroLevel.NN
|
|
|
|
|
{
|
|
|
|
|
public enum Age
|
|
|
|
|
{
|
|
|
|
|
From0To2,
|
|
|
|
|
From4To6,
|
|
|
|
|
From8To12,
|
|
|
|
|
From15To20,
|
|
|
|
|
From25To32,
|
|
|
|
|
From38To43,
|
|
|
|
|
From48To53,
|
|
|
|
|
From60To100
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/// <summary>
|
|
|
|
|
/// Input tensor is 1 x 3 x height x width with mean values 104, 117, 123. Input image have to be previously resized to 224 x 224 pixels and converted to BGR format.
|
|
|
|
|
/// </summary>
|
|
|
|
|
public class GoogleAgeDetector
|
|
|
|
|
: SSDNN
|
|
|
|
|
{
|
|
|
|
|
private const int INPUT_WIDTH = 224;
|
|
|
|
|
private const int INPUT_HEIGHT = 224;
|
|
|
|
|
private static float[] MEAN = new[] { 104f, 117f, 123f };
|
|
|
|
|
|
|
|
|
|
private Age[] _ageList = new[] { Age.From0To2, Age.From4To6, Age.From8To12, Age.From15To20, Age.From25To32, Age.From38To43, Age.From48To53, Age.From60To100 };
|
|
|
|
|
|
|
|
|
|
public GoogleAgeDetector(string modelPath, bool gpu = false) : base(modelPath, gpu)
|
|
|
|
|
{
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
public Age Predict(Image image)
|
|
|
|
|
{
|
|
|
|
|
var input = MakeInput(image,
|
|
|
|
|
new ImagePreprocessorOptions(INPUT_WIDTH, INPUT_HEIGHT, PredictorChannelType.ChannelFirst)
|
|
|
|
|
.ApplyCorrection((c, px) => px - MEAN[c])
|
|
|
|
|
.ApplyAxeInversion());
|
|
|
|
|
return Predict(input);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
public Age Predict(Tensor<float> input)
|
|
|
|
|
{
|
|
|
|
|
float[] variances = null;
|
|
|
|
|
Extract(new Dictionary<string, Tensor<float>> { { "input", input } }, d =>
|
|
|
|
|
{
|
|
|
|
|
variances = d.First().Value.ToArray();
|
|
|
|
|
});
|
|
|
|
|
var (number, index) = variances.Select((n, i) => (n, i)).Max();
|
|
|
|
|
return _ageList[index];
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|